scholarly journals Two different negative regulatory elements control the transcription of T-cell activation gene 3 in activated mast cells

1997 ◽  
Vol 323 (2) ◽  
pp. 511-519 ◽  
Author(s):  
Chad K. OH ◽  
Markus NEURATH ◽  
Jeong-Je CHO ◽  
Tekli SEMERE ◽  
Dean D. METCALFE

T-cell activation gene 3 (TCA3) encodes a β-chemokine that is transcriptionally regulated in mast cells; the gene has a functional NF-κB element at positions -194 to -185. The 5´-flanking region of this gene is also known to have a negative regulatory region between -2057 and -1342. To characterize the negative regulatory elements (NREs), this region was sequenced and then digested by HindIII enzyme into two fragments, NRE-1 (-2057 to -1493) and NRE-2 (-1492 to -1342). Both NRE-1 and NRE-2 in the 5´–3´ orientation inhibited chloramphenicol acetyltransferase (CAT)-protein synthesis by a TCA3–CAT construct transfected into mast cells that were then activated. Only NRE-1 inhibited CAT-protein synthesis in the 3´–5´ orientation. Further deletion of the 5´ region of NRE-1 partially abolished the inhibitory activity. Both NRE-1 and NRE-2 inhibited the activity of a CD20–CAT construct independent of cell activation. Electrophoretic mobility shift assays showed DNA–protein complex formation with subsequences (CCCCCATTCT) of NRE-1 (NRE-1a) and (CCATGA) of NRE-2 (NRE-2b). NRE-1a appears to be novel. NRE-2b is identical with a putative silencer motif in the αIIb integrin gene. Site-directed mutagenesis demonstrated that both NRE-1a and NRE-2b are important in the negative regulation of TCA3 promoter activity. In vivo ligation-mediated PCR footprinting of the NRE-2 region revealed protection between -1372 and -1354, which contains NRE-2b. The data thus demonstrate identity of a silencer motif, here termed NRE-2b, in both the αIIb integrin gene and the TCA3, and that this silencer region in mast cells is functional both in vivoand in vitro. Further, evidence is presented that the promoter for TCA3 contains a novel silencer motif, termed NRE-1a, characterized by a CT-rich sequence.

2009 ◽  
Vol 182 (8) ◽  
pp. 4686-4695 ◽  
Author(s):  
Taku Kambayashi ◽  
Eric J. Allenspach ◽  
John T. Chang ◽  
Tao Zou ◽  
Jonathan E. Shoag ◽  
...  

2006 ◽  
Vol 176 (4) ◽  
pp. 2238-2248 ◽  
Author(s):  
Susumu Nakae ◽  
Hajime Suto ◽  
Motoyasu Iikura ◽  
Maki Kakurai ◽  
Jonathon D. Sedgwick ◽  
...  

2006 ◽  
Vol 290 (1) ◽  
pp. L66-L74 ◽  
Author(s):  
Joshua Rubenfeld ◽  
Jia Guo ◽  
Nitat Sookrung ◽  
Rongbing Chen ◽  
Wanpen Chaicumpa ◽  
...  

Lysophosphatidic acid (LPA) is a membrane-derived lysophospholipid with wide-ranging effects on multiple lung cells including airway epithelial and smooth muscle cells. LPA can augment migration and cytokine synthesis in lymphocytes, but its potential effects on Th2 cytokines have not been well studied. We examined the effects of physiological concentrations of LPA on IL-13 gene expression in human T cells. The Jurkat T cell line and human peripheral blood CD4+ T cells were incubated with LPA alone or with 1) pharmacological agonists of different signaling pathways, or 2) antibodies directed against the T cell receptor complex and costimulatory molecules. Luciferase-based reporter constructs driven by different lengths of the human IL-13 promoter were transfected by electroporation in Jurkat cells treated with and without LPA. The effects of LPA on IL-13 mRNA stability were examined using actinomycin D to halt ongoing transcription. Expression of mRNA encoding LPA2and LPP-1 increased with T cell activation. LPA augmented IL-13 secretion under conditions of submaximal T cell activation. This was observed using pharmacological agonists activating intracellular calcium-, PKC-, and cAMP-dependent signaling pathways, as well as antibodies directed against CD3 and CD28. LPA only slightly prolonged IL-13 mRNA half-life in submaximally stimulated Jurkat cells. In contrast, LPA significantly enhanced transcriptional activation of the IL-13 promoter via regulatory elements contained within proximal 312 bp. The effects of LPA on IL-13 promoter activation appeared to be distinct from those mediated by GATA-3. LPA can augment IL-13 gene expression in T cells, especially under conditions of submaximal activation.


2000 ◽  
Vol 70 (2) ◽  
pp. 340-348 ◽  
Author(s):  
Laurent Mascarell ◽  
Johann Rudolf Frey ◽  
Fr??d??rique Michel ◽  
Ivan Lefkovits ◽  
Paolo Truffa-Bachi

2005 ◽  
Vol 102 (18) ◽  
pp. 6467-6472 ◽  
Author(s):  
S. Nakae ◽  
H. Suto ◽  
M. Kakurai ◽  
J. D. Sedgwick ◽  
M. Tsai ◽  
...  

Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1489-1496 ◽  
Author(s):  
Taku Kambayashi ◽  
Jan D. Baranski ◽  
Rebecca G. Baker ◽  
Tao Zou ◽  
Eric J. Allenspach ◽  
...  

Abstract It is generally thought that mast cells influence T-cell activation nonspecifically through the release of inflammatory mediators. In this report, we provide evidence that mast cells may also affect antigen-specific T-cell responses by internalizing immunoglobulin E–bound antigens for presentation to antigen-specific T cells. Surprisingly, T-cell activation did not require that mast cells express major histocompatibility complex class II, indicating that mast cells were not involved in the direct presentation of the internalized antigens. Rather, the antigen captured by mast cells is presented by other major histocompatibility complex class II+ antigen-presenting cells. To explore how this may occur, we investigated the fate of mast cells stimulated by antigen and found that FcϵRI crosslinking enhances mast cell apoptosis. Cell death by antigen-captured mast cells was required for efficient presentation because protection of mast cell death significantly decreased T-cell activation. These results suggest that mast cells may be involved in antigen presentation by acting as an antigen reservoir after antigen capture through specific immunoglobulin E molecules bound to their FcϵRI. This mechanism may contribute to how mast cells impact the development of T-cell responses.


Sign in / Sign up

Export Citation Format

Share Document