scholarly journals Differential expression and regulation of ryanodine receptor and myo-inositol 1,4,5-trisphosphate receptor Ca2+ release channels in mammalian tissues and cell lines

1997 ◽  
Vol 327 (1) ◽  
pp. 251-258 ◽  
Author(s):  
John J. MACKRILL ◽  
R. A. John CHALLISS ◽  
D. A. O'CONNELL ◽  
F. Anthony LAI ◽  
Stefan R. NAHORSKI

Ryanodine receptors (RyRs) and Ins(1,4,5)P3 receptors (Ins(1,4,5)P3Rs) represent two multigene families of channel proteins that mediate the release of Ca2+ ions from intracellular stores. In the present study, the expression patterns of these channel proteins in mammalian cell lines and tissues were investigated by using isoform-specific antibodies. All cell lines examined expressed two or more Ins(1,4,5)P3R isoforms, with the type 1 Ins(1,4,5)P3R being ubiquitous. RyR isoforms were detected in only six out of eight cell lines studied. Similarly, of the nine rabbit tissues examined, RyR protein expression was detected only in brain, heart, skeletal muscle and uterus. Specific [3H]ryanodine binding was found in a number of rabbit tissues, although it was not detected in mammalian cell lines. Subcellular fractionation of SH-SY5Y human neuroblastomas revealed that the type 2 RyR and type 1 Ins(1,4,5)P3R co-localize among the fractions of a sucrose-cushion separation of crude microsomal membrane fractions. Manipulation of SH-SY5Y cells by chronic stimulation of muscarinic acetylcholine receptor (mAChR) results in a decrease in their type 1 Ins(1,4,5)P3R levels but not in the abundance of the type 2 RyR. Differentiation of these neuroblastomas by using retinoic acid did not detectably alter their expression of Ca2+-release channel proteins. Finally, differentiation of BC3H1 cells affects the expression of their Ca2+-release channel proteins in an isoform-specific manner. In summary, this study demonstrates that mammalian cell lines display distinct patterns of Ca2+-release channel protein expression. The abundance of these proteins is differentially regulated during phenotypic modifications of a cell, such as differentiation or chronic stimulation of mAChR.

Autophagy ◽  
2008 ◽  
Vol 4 (6) ◽  
pp. 744-753 ◽  
Author(s):  
Méabh Cullinane ◽  
Lan Gong ◽  
Xuelei Li ◽  
Natalie-Lazar Adler ◽  
Thien Tra ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alessandro T. Caputo ◽  
Oliver M. Eder ◽  
Hana Bereznakova ◽  
Heleen Pothuis ◽  
Albert Ardevol ◽  
...  

AbstractPuromycin and the Streptomyces alboniger-derived puromycin N-acetyltransferase (PAC) enzyme form a commonly used system for selecting stably transfected cultured cells. The crystal structure of PAC has been solved using X-ray crystallography, revealing it to be a member of the GCN5-related N-acetyltransferase (GNAT) family of acetyltransferases. Based on structures in complex with acetyl-CoA or the reaction products CoA and acetylated puromycin, four classes of mutations in and around the catalytic site were designed and tested for activity. Single-residue mutations were identified that displayed a range of enzymatic activities, from complete ablation to enhanced activity relative to wild-type (WT) PAC. Cell pools of stably transfected HEK293 cells derived using two PAC mutants with attenuated activity, Y30F and A142D, were found to secrete up to three-fold higher levels of a soluble, recombinant target protein than corresponding pools derived with the WT enzyme. A third mutant, Y171F, appeared to stabilise the intracellular turnover of PAC, resulting in an apparent loss of selection stringency. Our results indicate that the structure-guided manipulation of PAC function can be utilised to enhance selection stringency for the derivation of mammalian cell lines secreting elevated levels of recombinant proteins.


1989 ◽  
Vol 159 (3) ◽  
pp. 1269-1274 ◽  
Author(s):  
J.G. Comerford ◽  
J.R. Gibson ◽  
A.P. Dawson ◽  
I. Gibson

Sign in / Sign up

Export Citation Format

Share Document