Independent and synergistic interaction of retinal G-protein subunits with bovine rhodopsin measured by surface plasmon resonance

2001 ◽  
Vol 358 (2) ◽  
pp. 389-397 ◽  
Author(s):  
William A. CLARK ◽  
Xiaoying JIAN ◽  
Loren CHEN ◽  
John K. NORTHUP

We have used surface plasmon resonance (SPR) measurements for the kinetic analysis of G-protein-receptor interaction monitored in real time. Functionally active rhodopsin was immobilized on an SPR surface, with full retention of biochemical specific activity for catalysis of nucleotide exchange on the retinal G-protein α subunit, via binding to immobilized concanavalin A. The binding interactions of bovine retinal αt and β1γ1 subunits with rhodopsin measured by SPR were profoundly synergistic. Synergistic binding of the retinal G-protein subunits to rhodopsin was not observed for guanosine 5′-[γ-thio]triphosphate-bound Gαt, nor was binding observed with squid retinal Gαq, which is not activated by bovine rhodopsin. The binding affinity (336±171nM; mean value±S.D.) of retinal βγ for rhodopsin in the presence of retinal α subunit measured by SPR confirmed the apparent affinity of 254nM determined previously by nucleotide exchange assays. Binding of β1γ1, β1γ2, and β1γ8-olf dimers to rhodopsin, independently of the α subunit, was readily observable by SPR. Further, these dimers, differing only in their γ subunit compositions, displayed markedly distinct binding affinities and kinetics. The β1γ2 dimer bound with a kinetically determined Kd of 13±3nM, a value nearly identical with the biochemically determined K1/2 of 10nM. The physiologically appropriate β1γ1 displayed rapid association and dissociation kinetics, whereas the other β1γ dimers dissociated at a rate less than 1/100 as fast. Thus rhodopsin interaction with its native signalling partners is both rapid and transient, whereas the interaction of rhodopsin with heterologous Gβγ dimers is markedly prolonged. These results suggest that the duration of a G-protein-coupled receptor signalling event is an intrinsic property of the G-protein coupling partners; in particular, the βγ dimer.

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5392
Author(s):  
Cecy R Xi ◽  
Arianna Di Fazio ◽  
Naveed Ahmed Nadvi ◽  
Karishma Patel ◽  
Michelle Sui Wen Xiang ◽  
...  

Proteases catalyse irreversible posttranslational modifications that often alter a biological function of the substrate. The protease dipeptidyl peptidase 4 (DPP4) is a pharmacological target in type 2 diabetes therapy primarily because it inactivates glucagon-like protein-1. DPP4 also has roles in steatosis, insulin resistance, cancers and inflammatory and fibrotic diseases. In addition, DPP4 binds to the spike protein of the MERS virus, causing it to be the human cell surface receptor for that virus. DPP4 has been identified as a potential binding target of SARS-CoV-2 spike protein, so this question requires experimental investigation. Understanding protein structure and function requires reliable protocols for production and purification. We developed such strategies for baculovirus generated soluble recombinant human DPP4 (residues 29–766) produced in insect cells. Purification used differential ammonium sulphate precipitation, hydrophobic interaction chromatography, dye affinity chromatography in series with immobilised metal affinity chromatography, and ion-exchange chromatography. The binding affinities of DPP4 to the SARS-CoV-2 full-length spike protein and its receptor-binding domain (RBD) were measured using surface plasmon resonance and ELISA. This optimised DPP4 purification procedure yielded 1 to 1.8 mg of pure fully active soluble DPP4 protein per litre of insect cell culture with specific activity >30 U/mg, indicative of high purity. No specific binding between DPP4 and CoV-2 spike protein was detected by surface plasmon resonance or ELISA. In summary, a procedure for high purity high yield soluble human DPP4 was achieved and used to show that, unlike MERS, SARS-CoV-2 does not bind human DPP4.


Author(s):  
Mats Leeman ◽  
Willem M. Albers ◽  
Radoslaw Bombera ◽  
Johana Kuncova-Kallio ◽  
Jussipekka Tuppurainen ◽  
...  

Abstract Coupling of surface plasmon resonance (SPR) detection to asymmetric flow field-flow fractionation (AF4) offers the possibility to study active fractions of bio-separations on real samples, such as serum and saliva, including the assessment of activity of possibly aggregated species. The coupling of SPR with AF4 requires the possibility to select fractions from a fractogram and redirect them to the SPR. The combination of SPR with chromatography-like methods also requires a mechanism for regeneration of the receptor immobilised onto the SPR sensor surface. In recent work, the combination of size exclusion chromatography (SEC) with SPR was pioneered as a successful methodology for identification, characterisation and quantification of active biocomponents in biological samples. In this study, the approach using AF4 is evaluated for the antibody trastuzumab in buffer and serum. The particular object of this study was to test the feasibility of using AF4 in combination with SPR to detect and quantify proteins and aggregates in complex samples such as blood serum. Also, in the investigation, three different immobilisation methods for the receptor HER-2 were compared, which involved (1) direct binding via EDC/NHS, the standard approach; (2) immobilisation via NTA-Ni-Histag complexation; and (3) biotin/avidin-linked chemistry using a regenerable form of avidin. The highest specific activity was obtained for the biotin-avidin method, while the lowest specific activity was observed for the NTA-Ni-Histag linkage. The data show that AF4 can separate trastuzumab monomers and aggregates in blood serum and that SPR has the ability to selectively monitor the elution. This is an encouraging result for automated analysis of complex biological samples using AF4-SPR.


Sign in / Sign up

Export Citation Format

Share Document