Biochemical characterization of the β-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis A.T.C.C. 31461

2001 ◽  
Vol 358 (2) ◽  
pp. 457-464 ◽  
Author(s):  
Paula VIDEIRA ◽  
Arsénio FIALHO ◽  
Roberto A. GEREMIA ◽  
Christelle BRETON ◽  
Isabel SÁ-CORREIA

Biosynthesis of bacterial polysaccharide-repeat units proceeds by sequential transfer of sugars, from the appropriate sugar donor to an activated lipid carrier, by committed glycosyltransferases (GTs). Few studies on the mechanism of action for this type of GT are available. Sphingomonas paucimobilis A.T.C.C. 31461 produces the industrially important polysaccharide gellan gum. We have cloned the gelK gene from S. paucimobilis A.T.C.C. 31461. GelK belongs to family 1 of the GT classification [Campbell, Davies, Bulone, Henrissat (1997) Biochem. J. 326, 929–939]. Sequence similarity studies suggest that GelK consists of two protein modules corresponding to the -NH2 and -CO2H halves, the latter possibly harbouring the GT activity. The gelK gene and the open reading frames coding for the -NH2 (GelKNH2) and -CO2H (GelKCOOH) halves were overexpressed in Escherichia coli. GelK and GelKNH2 were present in both the soluble and membrane fractions of E. coli, whereas GelKCOOH was only present in the soluble fraction. GelK catalysed the transfer of [14C]glucuronic acid from UDP-[14C]glucuronic acid into a glycolipid extracted from S. paucimobilis or E. coli, even in the presence of EDTA, and the radioactive sugar was released from the glycolipid by β-1,4-glucuronidase. GelK was not able to use synthetic glucosyl derivatives as acceptors, indicating that the PPi-lipid moiety is needed for enzymic activity. Recombinant GelKNH2 and GelKCOOH did not show detectable activity. Based on the biochemical characteristics of GelK and on sequence similarities with N-acetylglucosaminyltransferase, we propose that GT families 1 and 28 form a superfamily.

2000 ◽  
Vol 68 (7) ◽  
pp. 3793-3798 ◽  
Author(s):  
Dieter M. Bulach ◽  
Thareerat Kalambaheti ◽  
Alejandro de la Peña-Moctezuma ◽  
Ben Adler

ABSTRACT Lipopolysaccharide (LPS) is a key antigen in immunity to leptospirosis. Its biosynthesis requires enzymes for the biosynthesis and polymerization of nucleotide sugars and the transport through and attachment to the bacterial membrane. The genes encoding these functions are commonly clustered into loci; for Leptospira borgpetersenii serovar Hardjo subtype Hardjobovis, this locus, named rfb, spans 36.7 kb and contains 31 open reading frames, of which 28 have been assigned putative functions on the basis of sequence similarity. Characterization of the function of these genes is hindered by the fact that it is not possible to construct isogenic mutant strains in Leptospira. We used two approaches to circumvent this problem. The first was to clone the entire locus into a heterologous host system and determine if a “recombinant” LPS or polysaccharide was synthesized in the new host. The second approach used putative functions to identify mutants in other bacterial species whose mutations might be complemented by genes on the leptospiralrfb locus. This approach was used to investigate the function of three genes in the leptospiral rfb locus and demonstrated function for orfH10, which complemented awbpM strain of Pseudomonas aeruginosa, andorfH13, which complemented an rfbW strain ofVibrio cholerae. However, despite the similarity of OrfH11 to WecC, a wecC strain of E. coli was not complemented by orfH11. The predicted protein encoded byorfH8 is similar to GalE from a number of organisms. ASalmonella enterica serovar Typhimurium strain producing no GalE was used as a background in which orfH8 produced detectable GalE enzyme activity.


1999 ◽  
Vol 181 (8) ◽  
pp. 2564-2571 ◽  
Author(s):  
Gayatri Vedantam ◽  
Thomas J. Novicki ◽  
David W. Hecht

ABSTRACT Many bacterial genera, including Bacteroides spp., harbor mobilizable transposons, a class of transfer factors that carry genes for conjugal DNA transfer and, in some cases, antibiotic resistance. Mobilizable transposons are capable of inserting into and mobilizing other, nontransferable plasmids and are implicated in the dissemination of antibiotic resistance. This paper presents the isolation and characterization of Tn5520, a new mobilizable transposon from Bacteroides fragilis LV23. At 4,692 bp, it is the smallest mobilizable transposon reported from any bacterial genus. Tn5520 was captured from B. fragilis LV23 by using the transfer-deficient shuttle vector pGAT400ΔBglII. The termini of Tn5520 contain a 22-bp imperfect inverted repeat, and transposition does not result in a target site repeat. Tn5520 also demonstrates insertion site sequence preferences characterized by A-T-rich nucleotide sequences. Tn5520 has been sequenced in its entirety, and two large open reading frames whose predicted protein products exhibit strong sequence similarity to recombinase-integrase enzymes and mobilization proteins, respectively, have been identified. The transfer, mobilization, and transposition properties of Tn5520 have been studied, revealing that Tn5520mobilizes plasmids in both B. fragilis andEscherichia coli at high frequency and also transposes inE. coli.


2001 ◽  
Vol 358 (2) ◽  
pp. 457 ◽  
Author(s):  
Paula VIDEIRA ◽  
Arsénio FIALHO ◽  
Roberto A. GEREMIA ◽  
Christelle BRETON ◽  
Isabel SÁ-CORREIA

2020 ◽  
Author(s):  
Sunanda Mallick ◽  
Ashish Kumar ◽  
Hiren Dodia ◽  
Cyrus Alexander ◽  
Dileep Vasudevan ◽  
...  

The peptidoglycan (PG) layer is an intricate and dynamic component of the bacterial cell wall, which requires a constant balance between its synthesis and hydrolysis. FtsEX complex present on the inner membrane is shown to transduce signals to induce PG hydrolysis. FtsE has sequence similarity with the nucleotide-binding domain (NBDs) of ABC transporters. The NBDs in most of the ABC transporters couple ATP hydrolysis to transport molecules inside or outside the cell. Also, this reaction cycle is driven by the dimerization of NBDs. Though extensive studies have been carried out on the E. coli FtsEX complex, it remains elusive regarding how FtsEX complex helps in signal transduction or transportation of molecules. Also, very little is known about the biochemical properties and ATPase activities of FtsE. Because of its strong interaction with the membrane-bound protein FtsX, FtsE stays insoluble upon overexpression in E. coli, and thus, most studies on E. coli FtsE in the past have used refolded FtsE. Here in this paper, for the first time, we report the soluble expression, purification, and biochemical characterization of FtsE from E. coli. The purified soluble FtsEexhibits high thermal stability, exhibits ATPase activity and has more than one ATP-binding site. We have also demonstrated a direct interaction between FtsEand the cytoplasmic loop of FtsX. Together, our findings suggest that during bacterial division, the ATPase cycle of FtsE and its interaction with the FtsX cytoplasmic loop may help to regulate the peptidoglycan hydrolysis at the mid cell.


2018 ◽  
Author(s):  
Krithika Rajagopalan ◽  
Jonathan Dworkin

AbstractIn bacteria, signaling phosphorylation is thought to occur primarily on His and Asp residues. However, phosphoproteomic surveys in phylogenetically diverse bacteria over the past decade have identified numerous proteins that are phosphorylated on Ser and/or Thr residues. Consistently, genes encoding Ser/Thr kinases are present in many bacterial genomes such asE. coli,which encodes at least three Ser/Thr kinases. Since Ser/Thr phosphorylation is a stable modification, a dedicated phosphatase is necessary to allow reversible regulation. Ser/Thr phosphatases belonging to several conserved families are found in bacteria. One family of particular interest are Ser/Thr phosphatases which have extensive sequence and structural homology to eukaryotic Ser/Thr PP2C phosphatases. These proteins, called eSTPs (eukaryotic-like Ser/Thr phosphatases), have been identified in a number of bacteria, but not inE. coli.Here, we describe a previously unknown eSTP encoded by anE. coliORF,yegK,and characterize its biochemical properties including its kinetics, substrate specificity and sensitivity to known phosphatase inhibitors. We investigate differences in the activity of this protein in closely relatedE. colistrains. Finally, we demonstrate that this eSTP acts to dephosphorylate a novel Ser/Thr kinase which is encoded in the same operon.ImportanceRegulatory protein phosphorylation is a conserved mechanism of signaling in all biological systems. Recent phosphoproteomic analyses of phylogenetically diverse bacteria including the model Gram-negative bacteriumE. colidemonstrate that many proteins are phosphorylated on serine or threonine residues. In contrast to phosphorylation on histidine or aspartate residues, phosphorylation of serine and threonine residues is stable and requires the action of a partner Ser/Thr phosphatase to remove the modification. Although a number of Ser/Thr kinases have been reported inE. coli, no partner Ser/Thrphosphatases have been identified. Here, we biochemically characterize a novel Ser/Thr phosphatase that acts to dephosphorylate a Ser/Thr kinase that is encoded in the same operon.


2020 ◽  
Vol 75 (9) ◽  
pp. 2554-2563 ◽  
Author(s):  
Christopher Fröhlich ◽  
Vidar Sørum ◽  
Sandra Huber ◽  
Ørjan Samuelsen ◽  
Fanny Berglund ◽  
...  

Abstract Background MBLs form a large and heterogeneous group of bacterial enzymes conferring resistance to β-lactam antibiotics, including carbapenems. A large environmental reservoir of MBLs has been identified, which can act as a source for transfer into human pathogens. Therefore, structural investigation of environmental and clinically rare MBLs can give new insights into structure–activity relationships to explore the role of catalytic and second shell residues, which are under selective pressure. Objectives To investigate the structure and activity of the environmental subclass B1 MBLs MYO-1, SHD-1 and ECV-1. Methods The respective genes of these MBLs were cloned into vectors and expressed in Escherichia coli. Purified enzymes were characterized with respect to their catalytic efficiency (kcat/Km). The enzymatic activities and MICs were determined for a panel of different β-lactams, including penicillins, cephalosporins and carbapenems. Thermostability was measured and structures were solved using X-ray crystallography (MYO-1 and ECV-1) or generated by homology modelling (SHD-1). Results Expression of the environmental MBLs in E. coli resulted in the characteristic MBL profile, not affecting aztreonam susceptibility and decreasing susceptibility to carbapenems, cephalosporins and penicillins. The purified enzymes showed variable catalytic activity in the order of <5% to ∼70% compared with the clinically widespread NDM-1. The thermostability of ECV-1 and SHD-1 was up to 8°C higher than that of MYO-1 and NDM-1. Using solved structures and molecular modelling, we identified differences in their second shell composition, possibly responsible for their relatively low hydrolytic activity. Conclusions These results show the importance of environmental species acting as reservoirs for MBL-encoding genes.


2019 ◽  
Vol 201 (12) ◽  
Author(s):  
Ute Lindenstrauß ◽  
Constanze Pinske

ABSTRACTTrabulsiella guamensisis a nonpathogenic enterobacterium that was isolated from a vacuum cleaner on the island of Guam. It has one H2-oxidizing Hyd-2-type hydrogenase (Hyd) and encodes an H2-evolving Hyd that is most similar to the uncharacterizedEscherichia coliformate hydrogenlyase (FHL-2Ec) complex. TheT. guamensisFHL-2 (FHL-2Tg) complex is predicted to have 5 membrane-integral and between 4 and 5 cytoplasmic subunits. We showed that the FHL-2Tgcomplex catalyzes the disproportionation of formate to CO2and H2. FHL-2Tghas activity similar to that of theE. coliFHL-1Eccomplex in H2evolution from formate, but the complex appears to be more labile upon cell lysis. Cloning of the entire 13-kbp FHL-2Tgoperon in the heterologousE. colihost has now enabled us to unambiguously prove FHL-2Tgactivity, and it allowed us to characterize the FHL-2Tgcomplex biochemically. Although the formate dehydrogenase (FdhH) genefdhFis not contained in the operon, the FdhH is part of the complex, and FHL-2Tgactivity was dependent on the presence ofE. coliFdhH. Also, in contrast toE. coli,T. guamensiscan ferment the alternative carbon source cellobiose, and we further investigated the participation of both the H2-oxidizing Hyd-2Tgand the H2-forming FHL-2Tgunder these conditions.IMPORTANCEBiological H2production presents an attractive alternative for fossil fuels. However, in order to compete with conventional H2production methods, the process requires our understanding on a molecular level. FHL complexes are efficient H2producers, and the prototype FHL-1Eccomplex inE. coliis well studied. This paper presents the first biochemical characterization of an FHL-2-type complex. The data presented here will enable us to solve the long-standing mystery of the FHL-2Eccomplex, allow a first biochemical characterization ofT. guamensis’s fermentative metabolism, and establish this enterobacterium as a model organism for FHL-dependent energy conservation.


2006 ◽  
Vol 50 (6) ◽  
pp. 1973-1981 ◽  
Author(s):  
Magdalena Stoczko ◽  
Jean-Marie Frère ◽  
Gian Maria Rossolini ◽  
Jean-Denis Docquier

ABSTRACT The diffusion of metallo-β-lactamases (MBLs) among clinically important human pathogens represents a therapeutic issue of increasing importance. However, the origin of these resistance determinants is largely unknown, although an important number of proteins belonging to the MBL superfamily have been identified in microbial genomes. In this work, we analyzed the distribution and function of genes encoding MBL-like proteins in the class Rhizobiales. Among 12 released complete genomes of members of the class Rhizobiales, a total of 57 open reading frames (ORFs) were found to have the MBL conserved motif and identity scores with MBLs ranging from 8 to 40%. On the basis of the best identity scores with known MBLs, four ORFs were cloned into Escherichia coli for heterologous expression. Among their products, one (blr6230) encoded by the Bradyrhizobium japonicum USDA110 genome, named BJP-1, hydrolyzed β-lactams when expressed in E. coli. BJP-1 enzyme is most closely related to the CAU-1 enzyme from Caulobacter vibrioides (40% amino acid sequence identity), a member of subclass B3 MBLs. A kinetic analysis revealed that BJP-1 efficiently hydrolyzed most β-lactam substrates, except aztreonam, ticarcillin, and temocillin, with the highest catalytic efficiency measured with meropenem. Compared to other MBLs, BJP-1 was less sensitive to inactivation by chelating agents.


2016 ◽  
Vol 227 ◽  
pp. 56-63 ◽  
Author(s):  
Azam Safary ◽  
Rezvan Moniri ◽  
Maryam Hamzeh-Mivehroud ◽  
Siavoush Dastmalchi

Sign in / Sign up

Export Citation Format

Share Document