scholarly journals Nicotine promotes the development of non-small cell lung cancer through activating LINC00460 and PI3K/Akt signaling

2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Hongying Zhao ◽  
Yu Wang ◽  
Xiubao Ren

Abstract Objective: Nicotine, the main ingredient in tobacco, is identified to facilitate tumorigenesis and accelerate metastasis in tumor. Studies in recent years have reported that long intergenic non-protein coding RNA 460 (LINC00460) is strongly associated with lung cancer poor prognosis and nicotine dependence. Nonetheless, it is unclear whether nicotine promotes the development of lung cancer through activation of LINC00460. Methods: We determined that LINC00460 expression in lung cancer tissues and the prognosis in patients with non-small cell lung carcinoma (NSCLC) using Gene Expression Profiling Interactive Analysis (GEPIA) website and The Cancer Genome Atlas (TCGA) database. Through in vitro experiments, we studied the effects of nicotine on LINC00460 in NSCLC cells lines using Cell Counting Kit-8 (CCK-8), transwell test, flow cytometry, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot assays. Results: We identified the significant up-regulated expression level of LINC00460 in NSCLC tissues and cell lines, especially, the negative correlation of LINC00460 expression level with overall survival (OS). In in vitro experiments, LINC00460 was overexpressed in NSCLC cell lines under nicotine stimulation. Nicotine could relieve the effect of LINC00460 knockdown on NSCLC cell proliferation, migration and apoptosis. The same influence was observed on PI3K/Akt signaling pathway. Conclusions: In summary, this is the first time to examine the potential roles of LINC00460 in lung cancer cell proliferation, migration and apoptosis induced by nicotine. This may help to develop novel therapeutic strategies for the prevention and treatment of metastatic tumors from cigarette smoke-caused lung cancer by blocking the nicotine-activated LINC00460 pathway.

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Yunpeng Liu ◽  
Xingyu Lin ◽  
Shiyao Zhou ◽  
Peng Zhang ◽  
Guoguang Shao ◽  
...  

Abstract Background: The HOXA cluster antisense RNA 2 (HOXA-AS2) has recently been discovered to be involved in carcinogenesis in multiple cancers. However, the role and underlying mechanism of HOXA-AS2 in non-small cell lung cancer (NSCLC) yet need to be unraveled. Methods: HOXA-AS2 expression in NSCLC tissues and cell lines was detected using quantitative real-time PCR (qRT-PCR). Furthermore, the effects of HOXA-AS2 on NSCLC cell proliferation, apoptosis, migration, and invasion were assessed by MTS, flow cytometry, wound healing and transwell invasion assays, respectively. Starbase2.0 predicted and luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the association of HOXA-AS2 and miR-520a-3p in NSCLC cells. Results: Our results revealed that HOXA-AS2 in NSCLC tissues were up-regulated and cell lines, and were associated with poor prognosis and overall survival. Further functional assays demonstrated that HOXA-AS2 knockdown significantly inhibited NSCLC cell proliferation, induced cell apoptosis and suppressed migration and invasion. Starbase2.0 predicted that HOXA-AS2 sponge miR-520a-3p at 3′-UTR, which was confirmed using luciferase reporter and RIP assays. miR-520a-3p expression was inversely correlated with HOXA-AS2 expression in NSCLC tissues. In addition, miR-520a-3p inhibitor attenuated the inhibitory effect of HOXD-AS2-depletion on cell proliferation, migration and invasion of NSCLC cells. Moreover, HOXA-AS2 could regulate HOXD8 and MAP3K2 expression, two known targets of miR-520a-3p in NSCLC. Conclusion: These findings implied that HOXA-AS2 promoted NSCLC progression by regulating miR-520a-3p, suggesting that HOXA-AS2 could serve as a therapeutic target for NSCLC.


Author(s):  
Wei Wu ◽  
Linyan He ◽  
Yan Huang ◽  
Likun Hou ◽  
Wei Zhang ◽  
...  

An increasing number of studies have demonstrated that microRNAs (miRNAs) may play key roles in various cancer carcinogenesis and progression, including non-small cell lung cancer (NSCLC). However, the expressions, roles, and mechanisms of miR-510 in NSCLC have, up to now, been largely undefined. In vivo assay showed that miR-510 was upregulated in NSCLC tissues compared with that in adjacent nontumor lung tissues. miR-510 expression was significantly correlated with TNM stage and lymph node metastasis. In vitro assay indicated that expressions of miR-510 were also increased in NSCLC cell lines. Downregulation of miR-510 suppressed NSCLC cell proliferation and invasion in vitro. We identified SRC kinase signaling inhibitor 1 (SRCIN1) as a direct target gene of miR-510 in NSCLC. Expression of SRCIN1 was downregulated in lung cancer cells and negatively correlated with miR-510 expression in tumor tissues. Downregulation of SRCIN1, leading to inhibition of miR-510 expression, reversed cell proliferation and invasion in NSCLC cells. These results showed that miR-510 acted as an oncogenic miRNA in NSCLC, partly by targeting SRCIN1, suggesting that miR-510 can be a potential approach for the treatment of patients with malignant lung cancer.


Author(s):  
Wenwen Du ◽  
Jianjie Zhu ◽  
Yuanyuan Zeng ◽  
Ting Liu ◽  
Yang Zhang ◽  
...  

Abstract In addition to the role of programmed cell death ligand 1 (PD-L1) in facilitating tumour cells escape from immune surveillance, it is considered as a crucial effector in transducing intrinsic signals to promote tumour development. Our previous study has pointed out that PD-L1 promotes non-small cell lung cancer (NSCLC) cell proliferation, but the mechanism remains elusive. Here we first demonstrated that PD-L1 expression levels were positively correlated with p-MerTK levels in patient samples and NSCLC cell lines. In addition, PD-L1 knockdown led to the reduced phosphorylation level of MerTK in vitro. We next showed that PD-L1 regulated NSCLC cell proliferation via Gas6/MerTK signaling pathway in vitro and in vivo. To investigate the underlying mechanism, we unexpectedly found that PD-L1 translocated into the nucleus of cancer cells which was facilitated through the binding of Karyopherin β1 (KPNB1). Nuclear PD-L1 (nPD-L1), coupled with transcription factor Sp1, regulated the synthesis of Gas6 mRNA and promoted Gas6 secretion to activate MerTK signaling pathway. Taken together, our results shed light on the novel role of nPD-L1 in NSCLC cell proliferation and reveal a new molecular mechanism underlying nPD-L1-mediated Gas6/MerTK signaling activation. All above findings provide the possible combinational implications for PD-L1 targeted immunotherapy in the clinic.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13128-13128
Author(s):  
J. Wan ◽  
H. U. Saragovi ◽  
H. Conway ◽  
L. Ivanisevic

13128 Background: GD2 is a well-established target that has been validated for neuroblastoma and small cell lung cancer. The therapeutic and diagnostic use of monoclonal antibodies directed to GD2 in small cell lung cancer is well documented. It has been shown that the binding of GD2 monoclonal antibodies alone can induce growth suppression and cell death of small cell lung cancer cells in-vitro. Our laboratory has developed synthetic small molecule peptomimetics as ligands of GD2. Peptomimetics have favorable in-vivo pharmacological properties compared to antibodies with no immunogenicity, longer half-lives, low toxicity, good tissue penetration, biodistribution and high target selectivity. This study proposed to determine the efficacy of peptomimetics of GD2 antibodies against small cell lung cancer cells in-vitro. Methods: 2 human cell lines were studied. H69 is a classic small cell lung cancer and H82 is a morphological variant small cell lung cancer both of which have been reported in the literature to express GD2. Cell surface expression of ganglioside GD2 was analyzed by flow cytometry (FACScan, BD Biosciences) using GD2 mAB 3F8 and GD2 mAB ME361. Cell proliferation was assessed using standard MTT assays with serum containing medium and cultured for approximately 3 doubling times for each cell line. The cell lines were exposed to increasing doses of GD2 specific peptomimetic to a maximum of 25 uM with controls including serum containing media with and without a GD2 negative peptomimetic and assessed for cell proliferation. Results: GD2 expression was confirmed for both cell lines- H69 and H82 using FACs. Exposure of the GD2 specific peptomimetic clearly caused growth suppression on the range of 35–40% when compared to controls. A dose response relationship was demonstrated with a plateau beyond 10 uM concentrations. Each experiment repeated ≥ 3 occasions. Conclusions: We have shown that attachment of GD2 specific peptomimetics can cause decreased cell proliferation in 2 small cell lung cancer cell lines H69 and H82. We have shown that there is a dose response relationship by which these compounds reduce cell viability. Peptomimetics of GD2 antibodies show promise as a targeted therapy for small cell lung cancer in-vitro and warrant further study. [Table: see text]


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22100-e22100
Author(s):  
T. Hayashi ◽  
H. Tao ◽  
M. Jida ◽  
T. Kubo ◽  
H. Yamamoto ◽  
...  

e22100 Background: Cancer stem cell (CSCs) are believed to play important roles in tumor development, recurrence or metastasis. Identification of CSCs may have a therapeutic significance. CD133 expression has been shown on a minority of various human cancer cells with high capability of self-renewal and proliferation. Therefore, CD133 is thought to be one of possible markers for CSCs. Regarding human lung cancers, the existence, prevalence or roles of CD133 positive cells has not been fully understood. Methods: We examined CD133 mRNA by quantitative real-time PCR and sorted CD133-positive cells by fluorescence-activated cell sorting (FACS) using human small cell lung cancer(SCLC) and non-small cell lung cancer (NSCLC) cell lines. We evaluated differences of cell proliferation between CD133-positive and -negative cells by MTS assay in vitro and by subcutaneous injection for non- obese diabetic/severe combined immunodeficiency (NOD/SCID) mice in vivo. Results: CD133 expression was almost restricted in SCLC cell lines. CD133 mRNA expression or CD133-positive cell population was scarcely observed in NSCLC cell lines. In two SCLC cell lines examined (NCI-H82 and NCI-H69), CD133 positive cells had higher tumorgenicity both in vivo and in vitro than NSCLC cell lines. Conclusions: The expression status of CD133 is totally different between NSCLCs and SCLCs, probably reflecting the difference of these progenitor cells. Our results indicate that CD133-positive cells in SCLC cell are responsible for tumor growth. However, in view of their wide prevalence, CD133-positive cells do not seem to be a candidate for CSCs, at least in cell lines. To investigate the molecular and functional characteristics of CD133-positive cells may lead to a new therapeutic strategy for human lung cancers, especially for SCLCs. No significant financial relationships to disclose.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e68837 ◽  
Author(s):  
Caihua Xu ◽  
Chen Wu ◽  
Yang Xia ◽  
Zhaopeng Zhong ◽  
Xiang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document