scholarly journals miR-219a-5p enhances the radiosensitivity of non-small cell lung cancer cells through targeting CD164

2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Tao Wei ◽  
Shan Cheng ◽  
Xiao Na Fu ◽  
Lian Jie Feng

Abstract Lung cancer is one of the leading causes of cancer-associated mortality. Non-small cell lung carcinoma (NSCLC) accounts for 70–85% of the total cases of lung cancer. Radioresistance frequently develops in NSCLC in the middle and later stages of radiotherapy. We investigated the role of miR-219a-5p in radioresistance of NSCLC. miR-219a-5p expression in serum and lung tissue of lung cancer patients was lower than that in control. Compared with radiosensitive (RS) NSCLC patients, miR-219a-5p expression was decreased in serum and lung tissue in radioresistant patients. miR-219a-5p expression level was negatively associated with radioresistance in NSCLC cell lines. Up-regulation of miR-219a-5p increased radiosensitivity in radioresistant NSCLC cells in vitro and in vivo. Down-regulation of miR-219a-5p decreased radiosensitivity in radiosensitive A549 and H358 cells. miR-219a-5p could directly bind in the 3′UTR of CD164 and negatively regulated CD164 expression. CD164 expression was higher in radioresistant NSCLC tissues than RS tissues. Up-regulation of CD164 significantly inhibited miR-219a-5p-induced regulation of RS in radioresistant A549 and H358 cells. Down-regulation of CD164 significantly inhibited the effect of anti-miR-219a-5p on radiosensitive A549 and H358 cells. miR-219a-5p or down-regulation of CD164 could increase apoptosis and γ-H2A histone family member X (γ-H2AX) expression in radioresistant cells in vitro and in vivo. Up-regulation of CD164 could inhibit the effect of miR-219a-5p on apoptosis and γ-H2AX expression. Our results indicated that miR-219a-5p could inhibit CD164, promote DNA damage and apoptosis and enhance irradiation-induced cytotoxicity. The data highlight miR-219a-5p/CD164 pathway in the regulation of radiosensitivity in NSCLC and provide novel targets for potential intervention.

2020 ◽  
Author(s):  
Dong-bin Wang ◽  
Xuan Li ◽  
Xi-ke Lu ◽  
Zhong-yi Sun ◽  
Xun Zhang ◽  
...  

Abstract Background: Lung cancer is a leading cause of cancer death around the world, while the Transthyretin (TTR) is a specific biomarkers for clinical diagnosis. However, its role in lung cancer remains to be unknown. Methods: In the present study, we made attempt to investigate effect of abnormal expression of TTR on Non-small-cell lung carcinoma (NSCLC) by overexpression or knockdown of TTR.To further investigate the mechanisms underlying the potential role of TTR in NSCLC, we searched and verified several signal pathways . In vivo experiments, to verify the effect of TTR overexpression on tumors.Results: We finded that up-regulated TTR obviously suppressed cell proliferation, migration, invasion and increased apoptosis.Significant suppression of phosphor-MAPK/ERK was observed in TTR-treated NSCLC cells, implying that TTR was important for cellular progress by regulating MAPK/ERK signaling pathway. In vivo experiment, overexpression of TTR promoted cell apoptosis and inhibited tumor growth. Conclusions: Overall, our results suggest that TTR has a potential anti-tumor effect in human NSCLC progression, which provides theoretical basis for the diagnosis and treatment of NSCLC.Above all, further understanding of TTR was useful for clinical care.


1994 ◽  
Vol 80 (5) ◽  
pp. 332-334 ◽  
Author(s):  
Enzo Soresi ◽  
Giovanni Invernizzi ◽  
Roberto Boffi ◽  
Umberto Borghini ◽  
Gianfranco Schiraldi ◽  
...  

Aims and Background The somatostatin analog octreotide has an antiproliferative effect on small cell lung cancer lines in vitro and in experimental xenograft transplantation systems in vivo. Thus it is worth investigating octreotide activity in the clinical setting. Methods We studied the effect of octreotide (200 μg three times a day subcutaneously for seven days) on serum levels of the tumor marker neuroenolase in 13 patients with small cell lung cancer. Results A decrease in neuroenolase levels was observed at day 7 during octreotide treatment, with a mean ± SD of 32.6 ± 42.0 ng/ml compared to basal values of 44.4 ± 57.7 ng/ml and to washout values of 50.3 ± 65.7 ng/ml ( P < 0.03). Conclusions Our results indicate that octreotide is effective in reducing neuroenolase levels in small cell lung cancer patients. These data suggest a possible role for octreotide in the treatment of this kind of tumor.


2021 ◽  
Author(s):  
Haibo Han ◽  
Bo Pan ◽  
Fan Liang ◽  
Lina Wu ◽  
Xijuan Liu ◽  
...  

Abstract Background: MicroRNAs can regulates tumor metastasis either as an oncomiR or suppressor miRNA. Here, we investigate the role of miR-224 in lymphatic metastasis of non-small-cell lung cancer (NSCLC). Methods: The expression of miR-224 was demonstrated by a validation cohort of 156 lung cancer patients (77 cases with lymphatic metastasis) by q-PCR. In vitro and in vivo experiments were performed to study the malignant phenotype after upregulation and inhibition of miR-224 expression. Furthermore, the direct target genes of miR-224 were determined by a luciferase reporter assay. Results: miR-224 was identified as a high expression miRNA in the tumor tissues with lymphatic metastasis) with an area under the receiver operating characteristic curve (AUC) of 0.57. Forced expression of miR-224 in H1299 cells promoted not only the cell viability, plate clone formation, migration and invasion in vitro, but also tumor growth and lung metastasis in vivo. Consistently, inhibition of miR-224 suppressed the malignant characters both in vitro and in vivo. Molecular mechanism research suggested that miR-422a targeted the ANGPTL1 as a novel tumor suppressor.Conclusions: The present study demonstrates that miR-224 is a potential marker for the prediction of lymphatic metastasis of NSCLC. And application of miR-224 may help for prophylactic intervention of NSCLC in clinical practice.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Fu-Gang Duan ◽  
Mei-Fang Wang ◽  
Ya-Bing Cao ◽  
Dan Li ◽  
Run-Ze Li ◽  
...  

Abstract MicroRNAs regulate post-transcriptional gene expression and play important roles in multiple cellular processes. In this study, we found that miR-421 suppresses kelch-like ECH-associated protein 1(KEAP1) expression by targeting its 3′-untranslated region (3′UTR). A Q-PCR assay demonstrated that miR-421 is overexpressed in non-small cell lung cancer (NSCLC), especially in A549 cells. Consistently, the level of miR-421 was higher in clinical blood samples from lung cancer patients than in those from normal healthy donors, suggesting that miR-421 is an important lung cancer biomarker. Interestingly, overexpression of miR-421 reduced the level of KEAP1 expression, which further promoted lung cancer cell migration and invasion, as well as inhibited cell apoptosis both in vivo and in vitro. Furthermore, knockdown of miR-421 expression with an antisense morpholino oligonucleotide (AMO) increased ROS levels and treatment sensitivity to paclitaxel in vitro and in vivo, indicating that high miR-421 expression may at least partly account for paclitaxel tolerance in lung cancer patients. To find the upstream regulator of miR-421, one of the candidates, β-catenin, was knocked out via the CRISPR/Cas9 method in A549 cells. Our data showed that inhibiting β-catenin reduced miR-421 levels in A549 cells. In addition, β-catenin upregulation enhanced miR-421 expression, indicating that β-catenin regulates the expression of miR-421 in lung cancer. Taken together, our findings reveal the critical role of miR-421 in paclitaxel drug resistance and its upstream and downstream regulatory mechanisms. Therefore, miR-421 may serve as a potential molecular therapeutic target in lung cancer, and AMOs may be a potential treatment strategy.


2018 ◽  
Vol 50 (5) ◽  
pp. 2004-2016 ◽  
Author(s):  
Yintao Li ◽  
Menglin Bai ◽  
Yali Xu ◽  
Weiwei Zhao ◽  
Naijia Liu ◽  
...  

Background/Aims: Non-small-cell lung carcinoma (NSCLC) is the leading cause of cancer death, with tumor metastasis being mainly responsible for lung cancer-associated mortality. Our previous studies have found that tubulin polymerization promoting protein family member 3 (TPPP3) acted as a potential oncogene in NSCLC. Little is known about the function of TPPP3 in tumor metastasis. Methods: RT-qPCR and IHC were used to investigate the expression of TPPP3 in NSCLC tissues. CCK8 assay and transwell assay were used to measure proliferation and migration of NSCLC cells in vitro and xenograft model was performed to assess the tumor growth and metastasis in vivo. Results: In the present study, upregulation of TPPP3 was found to correlate with an increased metastasis capability of NSCLC. Ectopic expression of TPPP3 significantly enhanced cell proliferation in vitro and promoted tumor growth in vivo. Furthermore, overexpression of TPPP3 remarkably promoted NSCLC cell migration and invasion along with the upregulation of Twist1 both in vitro and in vivo. Further investigations showed that activation of STAT3 was required for TPPP3-mediated upregulation of Twist1, cell migration and invasion. A strong positive correlation between TPPP3 and Twist1 expression was identified in NSCLC tissues. Patients with low TPPP3 or low Twist1 in NSCLC tissues had a better prognosis with longer overall survival (OS) and disease-free survival (DFS). Conclusion: Overall, this study demonstrates that TPPP3 promotes the metastasis of NSCLC through the STAT3/Twist1 pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yun Chen ◽  
Sifu Yang ◽  
Hongying Zhou ◽  
Dan Su

Purpose. Previous studies have reported that the levels of PRDX2 were correlated with tumorigenicity, recurrence, and prognosis of patients with different cancers. We investigated the association between PRDX2 levels and the prognosis of lung cancer patients. We also measured PRDX2 expression of non-small cell lung cancer (NSCLC) cells and examined its roles in the proliferation and migration in vitro and in vivo. Methods. We used the Kaplan–Meier plotter to analyze the survival of different levels of PRDX2 in lung cancer patients. The expression of PRDX2 in normal bronchial epithelial cell line and NSCLC cell lines was measured by qRT-PCR and western blot assays. Biological functions of NSCLC cells were detected by CCK8 and Transwell assays. We constructed tumor growth model using subcutaneously injection of nude mice and metastasis model by tail vein injection in vivo. The protein levels of proliferation related markers were measured by immunohistochemistry assay. Immunofluorescence method was used to detected EMT-related proteins. Results. The high levels of PRDX2 were associated with bad prognosis in lung cancer patients, especially in patients with adenocarcinoma. The expression of PRDX2 in NSCLC cell lines was higher than normal bronchial epithelial cells. Knockdown of PRDX2 inhibited the proliferation, migration, and invasion in A549 cells, while overexpression of PRDX2 promoted the malignancy in NCI-H1299 cells in vitro. Silencing PRDX2 restrained tumor growth and repressed lung metastasis by EMT in vivo. Conclusion. Our data indicates that PRDX2 functions as a protumor regulator and is involved in tumorigenesis and tumor progression of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document