scholarly journals SMARCB1 expression is a novel diagnostic and prognostic biomarker for osteosarcoma

2022 ◽  
Author(s):  
Tao Guo ◽  
Ran Wei ◽  
Dylan C Dean ◽  
Francis Hornicek ◽  
Zhenfeng Duan

Background: Although weak SMARCB1 expression is a known diagnostic and prognostic biomarker in several malignancies, its expression and clinical significance in osteosarcoma remain unknown. The aim of this study was to investigate SMARCB1 expression in osteosarcoma and its clinical significance with respect to chemosensitivity and prognosis. Methods: We obtained 114 specimens from 70 osteosarcoma patients to construct a tissue microarray (TMA) and assess SMARCB1 protein expression via immunohistochemistry. The mRNA expression of SMARCB1 was in silico analyzed using open-access RNA sequencing (RNA-Seq) and clinicopathological data provided by the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) project. The correlations between SMARCB1 expression and clinical features were statistically analyzed. Results: Weak SMARCB1 expression occurred in 70% of the osteosarcoma patient specimens in the tissue microarray, and significantly correlated with poor neoadjuvant response as well as shorter overall and progression-free survival. In addition, mRNA in silico analysis confirmed SMARCB1 expression correlates with chemotherapeutic response and prognosis in osteosarcoma patients. Conclusion: To our knowledge, this study is the first to analyze SMARCB1 expression in osteosarcoma. SMARCB1 may serve as a novel diagnostic and prognostic biomarker in osteosarcoma.

2021 ◽  
Author(s):  
Key-Hwan Lim ◽  
Sumin Yang ◽  
Sung-Hyun Kim ◽  
Jae-Yeol Joo

Abstract Background Numerous studies have been conducted on different aspects of the COVID-19 (coronavirus disease 2019) pandemic, which is caused by SARS-CoV-2, since its emergence in late 2019. Mutual relations among SARS-CoV-2 and neuro-pathophysiological phenomena are continuously being demonstrated, and several underlying diseases, such as those in the elderly, are positively correlated with susceptibility to SARS-CoV-2 infection. The expression of angiotensin converting enzyme 2 (ACE2), which is required for SARS-CoV-2 infection, was recently demonstrated to be increased in Alzheimer’s disease (AD) patients. Methods Recent preclinical studies have shown that Neuropilin-1 (NRP1), which is a transmembrane protein with roles in neuronal development, axonal outgrowth, and angiogenesis, also plays a role in the infectivity of SARS-CoV-2. Thus, we hypothesized that NRP1 may be upregulated in AD patients and that a correlation between AD and SARS-CoV-2 NRP1-mediated infectivity may exist. We used an AD mouse model that mimics AD and performed high throughput total RNA-seq with brain tissue and whole blood. For quantification of NPR1 in AD, brain tissues and blood were subjected to western blotting and RT-qPCR analysis. In silico analysis for NRP1 expression in AD patients has been performed on the human hippocampus data sets (GSE4226, GSE1297). Results Many cases of severe symptom of COVID-19 are concentrated in elderly group who have complications such as diabetes, degenerative disease, and brain disorders. Total RNA-seq analysis showed that Nrp1 gene was commonly overexpressed in AD model. Similar to ACE2, NRP1 protein also strongly expressed in the AD brain tissues. Interestingly, in silico analysis revealed that the level of expression for NRP1 was distinct at age and AD progression. Conclusions Given that the NRP1 is highly expressed in AD, it will be important to understand and predict that NRP1 may a risk factor for SARS-CoV-2 infection in AD patients. This will support to development of potential therapeutic drug to reduce SARS-CoV-2 transmission.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-43
Author(s):  
Matthew McCoy ◽  
Shruti Rao ◽  
Shannon Cosgrove ◽  
Subha Madhavan ◽  
Shashikant Kulkarni ◽  
...  

Venetoclax is an oral, highly selective, BCL2 inhibitor approved by the FDA for use in chronic lymphocytic leukemia/small lymphocytic lymphoma and acute myeloid leukemia. Despite favorable responses, multiple biological mechanisms lead to treatment resistance. One such mechanism includes somatic mutations in the BCL2 gene. Multiple lines of evidence suggest that hot-spot mutations in BCL2 such as Gly101Val induce treatment resistance by disrupting the binding of BCL2 to the BCL2 inhibitors such as venetoclax. Further, widespread use of high-throughput NGS technologies has identified multiple BCL2 mutations and additional concurrent molecular alterations at various variant allele frequencies in patients with progression while undergoing venetoclax therapy. In order to understand and determine the clinical significance of each of these mutations, careful expert curation and integration into somatic variant annotation AMP/ASCO/CAP guidelines is needed. Further, curation of those somatic variants that may not have sufficient functional evidence in literature may benefit from additional tools such as in silico analysis. To address these issues, we have undertaken an effort to integrate the contributions of a multidisciplinary expert panel (clinical laboratory diagnosticians, oncologists, biomedical informaticians and lab-based researchers) for curation of BCL2 variants in hematological malignancies under the umbrella of ClinGen, an NIH/NHGRI funded consortium to establish standards and centralized resources for assessing the clinical significance of gene variants. Within the ClinGen Somatic Cancer Clinical Domain Working Group (CDWG) ((https://www.clinicalgenome.org/working-groups/somatic/), the somatic hematological malignancy taskforce has identified 56 peer-reviewed publications on BCL2 inhibitors (Jan 2014 to June 2020). The functional evidence contained within these publications was curated using CIViC (Clinical Interpretation of Variants in Cancer, civicdb.org), an open access, crowdsourced aggregation of expert curated evidence. Only a fraction of the somatic variants identified in BCL2 has established functional evidence on variant induced disruption to Venetoclax inhibition. Curation of these remaining variants of unknown significance (VUS) only have in silico functional assays to provide evidence on their potential resistance to Venetoclax. The current curation guidelines do not consider in silico prediction as a strong line of evidence for the interpretation of somatic sequence variants, however this recommendation is meant to interpret generalized in silico predictors and not robust computational models of specific protein function. The latter are more comparable to an experimental functional assay, and provide curators with more trustworthy computational assessments of disruption to protein specific functions. In order to assess their potential to integrate and supplement experimental evidence, the interaction of Ventoclax with several drug resistant BCL2 variants was simulated using AutoDock Vina (J Comput Chem. 2010;31(2):455-61). Facilitated by the SNP2SIM workflow (BMC Bioinformatics. 2019;20(1):171), the relative impact on binding energy was compared to the wildtype system. The in silico binding assay accurately predicted resistance (Fig 1), and demonstrates the utility of applying these methods to the large number of VUS in BCL2. In conclusion, the evidence-based expert curation of BCL2 variants provides a standardized approach for reporting and interpretation across all labs. For those variants (Tier 3) with limited published evidence, computational models that can predict specific changes to functional protein interactions can provide additional tools to the expert curators. Development and incorporation of these tools into curation guidelines requires the refinement of the predictive models through focused validation studies. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Key-Hwan Lim ◽  
Sumin Yang ◽  
Sung-Hyun Kim ◽  
Jae-Yeol Joo

Abstract Background Numerous studies have been conducted on different aspects of the COVID-19 (coronavirus disease 2019) pandemic, which is caused by SARS-CoV-2, since its emergence in late 2019. Mutual relations among SARS-CoV-2 and neuro-pathophysiological phenomena are continuously being demonstrated, and several underlying diseases, such as those in the elderly, are positively correlated with susceptibility to SARS-CoV-2 infection. The expression of angiotensin converting enzyme 2 (ACE2), which is required for SARS-CoV-2 infection, was recently demonstrated to be increased in Alzheimer’s disease (AD) patients.Methods Recent preclinical studies have shown that Neuropilin-1 (NRP1), which is a transmembrane protein with roles in neuronal development, axonal outgrowth, and angiogenesis, also plays a role in the infectivity of SARS-CoV-2. Thus, we hypothesized that NRP1 may be upregulated in AD patients and that a correlation between AD and SARS-CoV-2 NRP1-mediated infectivity may exist. We used an AD mouse model that mimics AD and performed high throughput total RNA-seq with brain tissue and whole blood. For quantification of NPR1 in AD, brain tissues and blood were subjected to western blotting and RT-qPCR analysis. In silico analysis for NRP1 expression in AD patients has been performed on the human hippocampus data sets (GSE4226, GSE1297).Results Many cases of severe symptom of COVID-19 are concentrated in elderly group who have complications such as diabetes, degenerative disease, and brain disorders. Total RNA-seq analysis showed that Nrp1 gene was commonly overexpressed in AD model. Similar to ACE2, NRP1 protein also strongly expressed in the AD brain tissues. Interestingly, in silico analysis revealed that the level of expression for NRP1 was distinct at age and AD progression.Conclusions Given that the NRP1 is highly expressed in AD, it will be important to understand and predict that NRP1 may a risk factor for SARS-CoV-2 infection in AD patients. This will support to development of potential therapeutic drug to reduce SARS-CoV-2 transmission.


2018 ◽  
Vol 96 (6) ◽  
pp. 832-839 ◽  
Author(s):  
Manal S. Fawzy ◽  
Alia Ellawindy ◽  
Mohammad H. Hussein ◽  
Moataz S. Khashana ◽  
Marwa K. Darwish ◽  
...  

Glioblastoma (GB) represents the most common malignant brain tumor, which, despite extensive research, remains of poor prognosis. The focus of recent studies of GB pathogenesis has shifted to the study of the role of noncoding RNAs (ncRNAs). In this study, we examined the expression levels of the microRNA miR-326 and the long ncRNA H19 (on which a miR-326 putative binding site was found by in-silico analysis) in brain tumor tissue from GB patients as compared to cancer-free brain tissue. Relative expression levels of miR-326 were not found to be significantly altered in GB patients. By comparison, H19 was consistently over-expressed in all GB patients (p < 0.001), and correlated with poorer overall survival (OS) and progression-free survival (PFS) (p = 0.026 and p = 0.045, respectively). At a cutoff value of 5.27, H19 up-regulation could predict OS in GB patients, with a 71.4% sensitivity and 59.6% specificity (p = 0.026). The current GB patients were clustered by the multivariate analysis into 4 groups based on miR-326 and H19 expression profiles, age at diagnosis, and PFS. Our data suggest a role for H19 in the pathogenesis of GB and could be a potential prognostic biomarker for GB.


2021 ◽  
Author(s):  
Javad Amini ◽  
Bahram Bibak ◽  
Amir R Afshar ◽  
Amirhossein Sahebkar

Neurodegenerative diseases (ND) are characterized by loss of function and structure of neurons. NDs like Alzheimer's disease (AD) and Parkinson's disease (PD) have high burden on the society and patients. Currently microRNAs (miRNAs) approach is growing. miRNAs express in different tissues, especially in the central neuron systems (CNS). miRNAs have a dynamic role in the CNS among this miRNAs, miR-124 significantly express in the CNS. Studies on miR-124 have shown that miR-124 improves ND. In this study, we evaluated the role of miR-124 in the ND by literature review and in silico analysis. We used Pubmed database to find miR-124 function in the Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease and amyotrophic lateral sclerosis. To better understand the role of miR-124 in the neurons, RNA-seq data form miR-124-deleted neuronal cells extracted from GEO database and analyzed in Galaxy platform. According literature review miR-124 attenuates inflammation and apoptosis in the ND by target NF-kb signaling pathway and regulation of BAX/BCL-2. miR-124 targets BACE1 and decreases level of Aβ. RNA-seq data showed miR-124 downregulation, an increase in chemokine gene like CCL1 and cytokine-cytokine receptor-interaction, as well as MAPK-signaling pathway. Our study shows that miR-124 can be promising therapeutic approaches to ND.


2020 ◽  
Vol 47 (6) ◽  
pp. 398-408
Author(s):  
Sonam Tulsyan ◽  
Showket Hussain ◽  
Balraj Mittal ◽  
Sundeep Singh Saluja ◽  
Pranay Tanwar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document