AAA proteases of mitochondria: quality control of membrane proteins and regulatory functions during mitochondrial biogenesis

2001 ◽  
Vol 29 (4) ◽  
pp. 431-436 ◽  
Author(s):  
T. Langer ◽  
M. Käser ◽  
C. Klanner ◽  
K. Leonhard

An ubiquitous and conserved proteolytic system regulates the stability of mitochondrial inner membrane proteins. Two AAA proteases with catalytic sites at opposite membrane surfaces form a membrane-integrated quality control system and exert crucial functions during the biogenesis of mitochondria. Their activity is modulated by another membrane-protein complex that is composed of prohibitins. Peptides generated upon proteolysis in the matrix space are transported across the inner membrane by an ATP-binding cassette transporter. The function of these conserved components is discussed in the present review.

2001 ◽  
Vol 12 (9) ◽  
pp. 2858-2869 ◽  
Author(s):  
Carola Klanner ◽  
Holger Prokisch ◽  
Thomas Langer

Eukaryotic AAA proteases form a conserved family of membrane-embedded ATP-dependent proteases but have been analyzed functionally only in the yeast Saccharomyces cerevisiae. Here, we have identified two novel members of this protein family in the filamentous fungus Neurospora crassa, which were termed MAP-1 and IAP-1. Both proteins are localized to the inner membrane of mitochondria. They are part of two similar-sized high molecular mass complexes, but expose their catalytic sites to opposite membrane surfaces, namely, the intermembrane and the matrix space. Disruption of iap-1 by repeat-induced point mutation caused a slow growth phenotype at high temperature and stabilization of a misfolded inner membrane protein against degradation. IAP-1 could partially substitute for functions of its yeast homolog Yme1, demonstrating functional conservation. However, respiratory growth at 37°C was not restored. Our results identify two components of the quality control system of the mitochondrial inner membrane in N. crassa and suggest that AAA proteases with catalytic sites exposed to opposite membrane surfaces are present in mitochondria of all eukaryotic cells.


mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Joseph T. Smith ◽  
Ujjal K. Singha ◽  
Smita Misra ◽  
Minu Chaudhuri

ABSTRACT The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei , the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei . Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei . Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes. IMPORTANCE Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite’s mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this mitochondrial protein import process is becoming clearer in T. brucei , a comprehensive picture of protein complex composition and function is still lacking. In this study, we characterized three T. brucei small Tim proteins, TbTim9, TbTim10, and TbTim8/13. Although the parasite does not have the classical TIM22 complex that imports mitochondrial inner membrane proteins containing internal targeting signals in yeast or humans, we found that these small TbTims associate with TbTim17, the major subunit of the TbTIM complex in T. brucei , and play an essential role in the stability of the TbTim17 complexes. Therefore, these divergent proteins are critical for mitochondrial protein biogenesis in T. brucei .


2006 ◽  
Vol 17 (9) ◽  
pp. 4051-4062 ◽  
Author(s):  
Michelle R. Gallas ◽  
Mary K. Dienhart ◽  
Rosemary A. Stuart ◽  
Roy M. Long

Many mitochondrial proteins are encoded by nuclear genes and after translation in the cytoplasm are imported via translocases in the outer and inner membranes, the TOM and TIM complexes, respectively. Here, we report the characterization of the mitochondrial protein, Mmp37p (YGR046w) and demonstrate its involvement in the process of protein import into mitochondria. Haploid cells deleted of MMP37 are viable but display a temperature-sensitive growth phenotype and are inviable in the absence of mitochondrial DNA. Mmp37p is located in the mitochondrial matrix where it is peripherally associated with the inner membrane. We show that Mmp37p has a role in the translocation of proteins across the mitochondrial inner membrane via the TIM23-PAM complex and further demonstrate that substrates containing a tightly folded domain in close proximity to their mitochondrial targeting sequences display a particular dependency on Mmp37p for mitochondrial import. Prior unfolding of the preprotein, or extension of the region between the targeting signal and the tightly folded domain, relieves their dependency for Mmp37p. Furthermore, evidence is presented to show that Mmp37 may affect the assembly state of the TIM23 complex. On the basis of these findings, we hypothesize that the presence of Mmp37p enhances the early stages of the TIM23 matrix import pathway to ensure engagement of incoming preproteins with the mtHsp70p/PAM complex, a step that is necessary to drive the unfolding and complete translocation of the preprotein into the matrix.


1990 ◽  
Vol 10 (5) ◽  
pp. 1873-1881
Author(s):  
S M Glaser ◽  
B R Miller ◽  
M G Cumsky

We have examined the import and intramitochondrial localization of the precursor to yeast cytochrome c oxidase subunit Va, a protein of the mitochondrial inner membrane. The results of studies on the import of subunit Va derivatives carrying altered presequences suggest that the uptake of this protein is highly efficient. We found that a presequence of only 5 amino acids (Met-Leu-Ser-Leu-Arg) could direct the import and localization of subunit Va with wild-type efficiency, as judged by several different assays. We also found that subunit Va could be effectively targeted to the mitochondrial inner membrane with a heterologous presequence that failed to direct import of its cognate protein. The results presented here confirmed those of an earlier study and showed clearly that the information required to "sort" subunit Va to the inner membrane resides in the mature protein sequence, not within the presequence per se. We present additional evidence that the aforementioned sorting information is contained, at least in part, in a hydrophobic stretch of 22 amino acids residing within the C-terminal third of the protein. Removal of this domain caused subunit Va to be mislocalized to the mitochondrial matrix.


2001 ◽  
Vol 114 (21) ◽  
pp. 3915-3921 ◽  
Author(s):  
Stefan J. Kerscher ◽  
Andrea Eschemann ◽  
Pamela M. Okun ◽  
Ulrich Brandt

Alternative NADH:ubiquinone oxidoreductases are single subunit enzymes capable of transferring electrons from NADH to ubiquinone without contributing to the proton gradient across the respiratory membrane. The obligately aerobic yeast Yarrowia lipolytica has only one such enzyme, encoded by the NDH2 gene and located on the external face of the mitochondrial inner membrane. In sharp contrast to ndh2 deletions, deficiencies in nuclear genes for central subunits of proton pumping NADH:ubiquinone oxidoreductases (complex I) are lethal. We have redirected NDH2 to the internal face of the mitochondrial inner membrane by N-terminally attaching the mitochondrial targeting sequence of NUAM, the largest subunit of complex I. Lethality of complex I mutations was rescued by the internal, but not the external version of alternative NADH:ubiquinone oxidoreductase. Internal NDH2 also permitted growth in the presence of complex I inhibitors such as 2-decyl-4-quinazolinyl amine (DQA). Functional expression of NDH2 on both sides of the mitochondrial inner membrane indicates that alternative NADH:ubiquinone oxidoreductase requires no additional components for catalytic activity. Our findings also demonstrate that shuttle mechanisms for the transfer of redox equivalents from the matrix to the cytosolic side of the mitochondrial inner membrane are insufficient in Y. lipolytica.


Contact ◽  
2018 ◽  
Vol 1 ◽  
pp. 251525641876404
Author(s):  
Non Miyata ◽  
Osamu Kuge

Maintenance of the cardiolipin (CL) level largely depends on Ups1-Mdm35 complex-mediated intramitochondrial phosphatidic acid transfer. In addition, the presence of an alternative CL accumulation pathway has been suggested in the yeast Saccharomyces cerevisiae. This pathway is independent of the Ups1-Mdm35 complex and stimulated by loss of Ups2, which forms a complex with Mdm35 and mediates intramitochondrial transfer of phosphatidylserine for phosphatidylethanolamine synthesis. Recently, we found that the alternative CL accumulation pathway is enhanced by a lowered phosphatidylethanolamine level, not by loss of Ups2 per se, and depends on three mitochondrial inner membrane proteins, Fmp30, Mdm31, and Mdm32.


1991 ◽  
Vol 278 (3) ◽  
pp. 715-719 ◽  
Author(s):  
A P Halestrap

1. The rate of opening of the Ca(2+)-induced non-specific, cyclosporin A-inhibited, pore of the mitochondrial inner membrane of rat heart and liver mitochondria at pH 6.0 was less than 10% of that at pH 7.4. 2. The effect could not be explained by inhibition of Ca2+ uptake into the mitochondria, or of the matrix peptidyl-prolyl cis-trans isomerase (PPIase), or of the Ca(2+)-induced conformational change of the adenine nucleotide translocase. 3. It is suggested that the proposed interaction of matrix PPIase with the ‘c’ conformation of the adenine nucleotide carrier in the presence of Ca2+ [Griffiths & Halestrap (1991) Biochem. J. 274, 611-614] is inhibited by low pH. 4. The relevance of this to the protective effect of low pH on hypoxic and chemical-induced cell damage is discussed.


2006 ◽  
Vol 31 (5) ◽  
pp. 259-267 ◽  
Author(s):  
Carine de Marcos-Lousa ◽  
Dionisia P Sideris ◽  
Kostas Tokatlidis

Sign in / Sign up

Export Citation Format

Share Document