Role of AMP-activated protein kinase in the regulation of gene transcription

2002 ◽  
Vol 30 (2) ◽  
pp. 307-311 ◽  
Author(s):  
I. Leclerc ◽  
B. Viollet ◽  
G. da Silva Xavier ◽  
A. Kahn ◽  
G. A. Rutter

AMP-activated protein kinase (AMPK) is a regulator of cellular metabolism in response to changes in the energy status of the cells. AMPK was known to shut down energy-consuming pathways in response to a fall in the ATP/AMP ratio by phosphorylating key enzymes of intermediate metabolism. Here we will discuss the recent evidence implicating AMPK in the regulation of gene expression in mammals, mainly in the liver and in the pancreatic β-cells.

2000 ◽  
Vol 20 (18) ◽  
pp. 6704-6711 ◽  
Author(s):  
Angela Woods ◽  
Dalila Azzout-Marniche ◽  
Marc Foretz ◽  
Silvie C. Stein ◽  
Patricia Lemarchand ◽  
...  

ABSTRACT In the liver, glucose induces the expression of a number of genes involved in glucose and lipid metabolism, e.g., those encoding L-type pyruvate kinase and fatty acid synthase. Recent evidence has indicated a role for the AMP-activated protein kinase (AMPK) in the inhibition of glucose-activated gene expression in hepatocytes. It remains unclear, however, whether AMPK is involved in the glucose induction of these genes. In order to study further the role of AMPK in regulating gene expression, we have generated two mutant forms of AMPK. One of these (α1312) acts as a constitutively active kinase, while the other (α1DN) acts as a dominant negative inhibitor of endogenous AMPK. We have used adenovirus-mediated gene transfer to express these mutants in primary rat hepatocytes in culture in order to determine their effect on AMPK activity and the transcription of glucose-activated genes. Expression of α1312 increased AMPK activity in hepatocytes and blocked completely the induction of a number of glucose-activated genes in response to 25 mM glucose. This effect is similar to that observed following activation of AMPK by 5-amino-imidazolecarboxamide riboside. Expression of α1DN markedly inhibited both basal and stimulated activity of endogenous AMPK but had no effect on the transcription of glucose-activated genes. Our results suggest that AMPK is involved in the inhibition of glucose-activated gene expression but not in the induction pathway. This study demonstrates that the two mutants we have described will provide valuable tools for studying the wider physiological role of AMPK.


2004 ◽  
Vol 561 (1) ◽  
pp. 133-147 ◽  
Author(s):  
Hui Zhang ◽  
Masahiro Nagasawa ◽  
Satoko Yamada ◽  
Hideo Mogami ◽  
Yuko Suzuki ◽  
...  

2017 ◽  
Vol 292 (21) ◽  
pp. 8716-8728 ◽  
Author(s):  
Yoshifumi Sato ◽  
Tomonori Tsuyama ◽  
Chinami Sato ◽  
Md. Fazlul Karim ◽  
Tatsuya Yoshizawa ◽  
...  

2013 ◽  
Vol 85 (7) ◽  
pp. 991-998 ◽  
Author(s):  
Ramachandran Balasubramanian ◽  
Hiroshi Maruoka ◽  
P. Suresh Jayasekara ◽  
Zhan-Guo Gao ◽  
Kenneth A. Jacobson

2004 ◽  
Vol 40 (3S) ◽  
pp. 179-190 ◽  
Author(s):  
Guy A. Rutter ◽  
Isabelle Leclerc ◽  
Takashi Tsuboi ◽  
Gabriela da Silva Xavier ◽  
Frédérique Diraison ◽  
...  

2003 ◽  
Vol 375 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Guy A. RUTTER ◽  
Gabriela da SILVA XAVIER ◽  
Isabelle LECLERC

AMPK (5′-AMP-activated protein kinase) is emerging as a metabolic master switch, by which cells in both mammals and lower organisms sense and decode changes in energy status. Changes in AMPK activity have been shown to regulate glucose transport in muscle and glucose production by the liver. Moreover, AMPK appears to be a key regulator of at least one transcription factor linked to a monogenic form of diabetes mellitus. As a result, considerable efforts are now under way to explore the usefulness of AMPK as a therapeutic target for other forms of this disease. Here we review this topic, and discuss new findings which suggest that AMPK may play roles in regulating insulin release and the survival of pancreatic islet β-cells, and nutrient sensing by the brain.


2012 ◽  
Vol 303 (5) ◽  
pp. C475-C485 ◽  
Author(s):  
Anthony M. J. Sanchez ◽  
Robin B. Candau ◽  
Alfredo Csibi ◽  
Allan F. Pagano ◽  
Audrey Raibon ◽  
...  

The AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that acts as a sensor of cellular energy status switch regulating several systems including glucose and lipid metabolism. Recently, AMPK has been implicated in the control of skeletal muscle mass by decreasing mTORC1 activity and increasing protein degradation through regulation of ubiquitin-proteasome and autophagy pathways. In this review, we give an overview of the central role of AMPK in the control of skeletal muscle plasticity. We detail particularly its implication in the control of the hypertrophic and atrophic signaling pathways. In the light of these cumulative and attractive results, AMPK appears as a key player in regulating muscle homeostasis and the modulation of its activity may constitute a therapeutic potential in treating muscle wasting syndromes in humans.


Sign in / Sign up

Export Citation Format

Share Document