The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis

2012 ◽  
Vol 303 (5) ◽  
pp. C475-C485 ◽  
Author(s):  
Anthony M. J. Sanchez ◽  
Robin B. Candau ◽  
Alfredo Csibi ◽  
Allan F. Pagano ◽  
Audrey Raibon ◽  
...  

The AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that acts as a sensor of cellular energy status switch regulating several systems including glucose and lipid metabolism. Recently, AMPK has been implicated in the control of skeletal muscle mass by decreasing mTORC1 activity and increasing protein degradation through regulation of ubiquitin-proteasome and autophagy pathways. In this review, we give an overview of the central role of AMPK in the control of skeletal muscle plasticity. We detail particularly its implication in the control of the hypertrophic and atrophic signaling pathways. In the light of these cumulative and attractive results, AMPK appears as a key player in regulating muscle homeostasis and the modulation of its activity may constitute a therapeutic potential in treating muscle wasting syndromes in humans.

2009 ◽  
Vol 34 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Gregory R. Steinberg

During moderate-intensity exercise, fatty acids are the predominant substrate for working skeletal muscle. The release of fatty acids from adipose tissue stores, combined with the ability of skeletal muscle to actively fine tune the gradient between fatty acid and carbohydrate metabolism, depending on substrate availability and energetic demands, requires a coordinated system of metabolic control. Over the past decade, since the discovery that AMP-activated protein kinase (AMPK) was increased in accordance with exercise intensity, there has been significant interest in the proposed role of this ancient stress-sensing kinase as a critical integrative switch controlling metabolic responses during exercise. In this review, studies examining the role of AMPK as a regulator of fatty acid metabolism in both adipose tissue and skeletal muscle during exercise will be discussed. Exercise induces activation of AMPK in adipocytes and regulates triglyceride hydrolysis and esterfication through phosphorylation of hormone sensitive lipase (HSL) and glycerol-3-phosphate acyl-transferase, respectively. In skeletal muscle, exercise-induced activation of AMPK is associated with increases in fatty acid uptake, phosphorylation of HSL, and increased fatty acid oxidation, which is thought to occur via the acetyl-CoA carboxylase-malony-CoA-CPT-1 signalling axis. Despite the importance of AMPK in regulating fatty acid metabolism under resting conditions, recent evidence from transgenic models of AMPK deficiency suggest that alternative signalling pathways may also be important for the control of fatty acid metabolism during exercise.


2007 ◽  
Vol 192 (3) ◽  
pp. 605-614 ◽  
Author(s):  
Fang Cai ◽  
Armen V Gyulkhandanyan ◽  
Michael B Wheeler ◽  
Denise D Belsham

The mammalian hypothalamus comprises an array of phenotypically distinct cell types that interpret peripheral signals of energy status and, in turn, elicits an appropriate response to maintain energy homeostasis. We used a clonal representative hypothalamic cell model expressing proopiomelanocortin (POMC; N-43/5) to study changes in AMP-activated protein kinase (AMPK) activity and glucose responsiveness. We have demonstrated the presence of cellular machinery responsible for glucose sensing in the cell line, including glucokinase, glucose transporters, and appropriate ion channels. ATP-sensitive potassium channels were functional and responded to glucose. The N-43/5 POMC neurons may therefore be an appropriate cell model to study glucose-sensing mechanisms in the hypothalamus. In N-43/5 POMC neurons, increasing glucose concentrations decreased phospho-AMPK activity. As a relevant downstream effect, we found that POMC transcription increased with 2.8 and 16.7 mM glucose. Upon addition of leptin, with either no glucose or with 5 mM glucose, we found that leptin decreased AMPK activity in N-43/5 POMC neurons, but had no significant effect at 25 mM glucose, whereas insulin decreased AMPK activity at only 5 mM glucose. These results demonstrate that individual hypothalamic neuronal cell types, such as the POMC neuron, can have distinct responses to peripheral signals that relay energy status to the brain, and will therefore be activated uniquely to control neuroendocrine function.


2007 ◽  
Vol 32 (5) ◽  
pp. 852-856 ◽  
Author(s):  
Sean L. McGee

Exercise increases the metabolic capacity of skeletal muscle, which improves whole-body energy homeostasis and contributes to the positive health benefits of exercise. This is, in part, mediated by increases in the expression of a number of metabolic enzymes, regulated largely at the level of transcription. At a molecular level, many of these genes are regulated by the class II histone deacetylase (HDAC) family of transcriptional repressors, in particular HDAC5, through their interaction with myocyte enhancer factor 2 transcription factors. HDAC5 kinases, including 5′-AMP-activated protein kinase and protein kinase D, appear to regulate skeletal muscle metabolic gene transcription by inactivating HDAC5 and inducing HDAC5 nuclear export. These mechanisms appear to participate in exercise-induced gene expression and could be important for skeletal muscle adaptations to exercise.


Physiology ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 48-60 ◽  
Author(s):  
D. Grahame Hardie ◽  
Kei Sakamoto

Contraction induces marked metabolic changes in muscle, and the AMP-activated protein kinase (AMPK) is a good candidate to explain these effects. Recent work using a muscle-specific knockout of the upstream kinase, LKB1, has confirmed that the LKB1→AMPK cascade is the signaling pathway responsible for many of these effects.


2015 ◽  
Vol 309 (7) ◽  
pp. E679-E690 ◽  
Author(s):  
Milena Schönke ◽  
Martin G. Myers ◽  
Juleen R. Zierath ◽  
Marie Björnholm

AMP-activated protein kinase (AMPK) is a major sensor of energy homeostasis and stimulates ATP-generating processes such as lipid oxidation and glycolysis in peripheral tissues. The heterotrimeric enzyme consists of a catalytic α-subunit, a β-subunit that is important for enzyme activity, and a noncatalytic γ-subunit that binds AMP and activates the AMPK complex. We generated a skeletal muscle Cre-inducible transgenic mouse model expressing a mutant γ1-subunit (AMPKγ1H151R), resulting in chronic AMPK activation. The expression of the predominant AMPKγ3 isoform in skeletal muscle was reduced in extensor digitorum longus (EDL) muscle (81–83%) of AMPKγ1H151R transgenic mice, whereas the abundance and phosphorylation of the AMPK target acetyl-CoA carboxylase was increased in tibialis anterior muscle. Glycogen content was increased 10-fold in gastrocnemius muscle. Whole body carbohydrate oxidation was increased by 11%, and whereas glucose tolerance was unaffected, insulin sensitivity was increased in AMPKγ1H151R transgenic mice. Furthermore, perigonadal white adipose tissue mass and serum leptin were reduced in female AMPKγ1H151R transgenic mice by 38 and 51% respectively. Conversely, in male AMPKγ1H151R transgenic mice, food intake was increased (14%), but body weight and body composition were unaltered, presumably because of increased energy expenditure. In conclusion, transgenic activation of skeletal muscle AMPKγ1 in this model plays an important sex-specific role in skeletal muscle metabolism and whole body energy homeostasis.


2005 ◽  
Vol 83 (1) ◽  
pp. 24-28 ◽  
Author(s):  
Anita Y.M Chan ◽  
Jason R.B Dyck

A necessary mediator of cardiac myocyte enlargement is protein synthesis, which is controlled, in part, by the highly energy-consuming process of peptide-chain elongation. Recently, AMP-activated protein kinase (AMPK), which is a key regulator of cellular energy homeostasis, has been shown to phosphorylate a number of enzymes involved in the control of protein synthesis. Since AMPK may inhibit protein synthesis via a number of different pathways, it is possible that AMPK is also a key regulator of cardiac hypertrophy. Recent advances linking AMPK and the energy status of the cell to the regulation of protein synthesis and (or) cardiac myocyte hypertrophy will be discussed.Key words: AMPK, cardiac hypertrophy, protein synthesis, cardiac myocyte, energy metabolism.


Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 600-606 ◽  
Author(s):  
Stephan Glund ◽  
Jonas T. Treebak ◽  
Yun Chau Long ◽  
Romain Barres ◽  
Benoit Viollet ◽  
...  

IL-6 is released from skeletal muscle during exercise and has consequently been implicated to mediate beneficial effects on whole-body metabolism. Using 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), a pharmacological activator of 5′-AMP-activated protein kinase (AMPK), we tested the hypothesis that AMPK modulates IL-6 release from isolated muscle. Skeletal muscle from AMPKα2 kinase-dead transgenic, AMPKα1 knockout (KO) and AMPKγ3 KO mice and respective wild-type littermates was incubated in vitro, in the absence or presence of 2 mmol/liter AICAR. Skeletal muscle from wild-type mice was also incubated with the AMPK activator A-769662. Incubation of mouse glycolytic extensor digitorum longus and oxidative soleus muscle for 2 h was associated with profound IL-6 mRNA production and protein release, which was suppressed by AICAR (P < 0.001). Basal IL-6 release from soleus was increased between AMPKα2 kinase-dead and AMPKα1 KO and their respective wild-type littermates (P < 0.05), suggesting AMPK participates in the regulation of IL-6 release from oxidative muscle. The effect of AICAR on muscle IL-6 release was similar between AMPKα2 KD, AMPKα1 KO, and AMPKγ3 KO mice and their respective wild-type littermates (P < 0.001), indicating AICAR-mediated suppression of IL-6 mRNA expression and protein release is independent of AMPK function. However, IL-6 release from soleus, but not extensor digitorum longus, was reduced 45% by A-769662. Our results on basal and A-769662-mediated IL-6 release provide evidence for a role of AMPK in the regulation of IL-6 release from oxidative skeletal muscle. Furthermore, in addition to activating AMPK, AICAR suppresses IL-6 release by an unknown, AMPK-independent mechanism. Using transgenic and knockout mouse models to perturb AMP-activated protein kinase (AMPK) signaling, we provide evidence that AMPK-dependent pathways regulate IL-6 release from isolated oxidative skeletal muscle.


2018 ◽  
Vol 32 (6) ◽  
pp. 2950-2965 ◽  
Author(s):  
Athan G. Dial ◽  
Paul Rooprai ◽  
James S. Lally ◽  
Adam L. Bujak ◽  
Gregory R. Steinberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document