Archaeal integrases and mechanisms of gene capture

2004 ◽  
Vol 32 (2) ◽  
pp. 222-226 ◽  
Author(s):  
Q. She ◽  
B. Shen ◽  
L. Chen

Archaeal integrases facilitate the formation of two distinctive types of integrated element within archaeal chromosomes: the SSV type and pNOB8 type. The former carries a smaller N-terminal and a larger C-terminal integrase gene fragment, and the latter an intact integrase gene. All integrated elements overlap tRNA genes that were target sites for integration. It has been demonstrated that SSV (Sulfolobus spindle virus) viruses, carrying an SSV-type integrase gene, and conjugative plasmids, carrying a pNOB8-type integrase, are integrative elements. Two mechanisms have been proposed for stably maintaining an integrated element within archaeal chromosomes. There is also evidence for changes having occurred in the captured integrated elements present in archaeal genomes. Thus we infer that site-specific integration constitutes an important mechanism for horizontal gene transfer and genome evolution.

2009 ◽  
Vol 364 (1527) ◽  
pp. 2275-2289 ◽  
Author(s):  
Anders Norman ◽  
Lars H. Hansen ◽  
Søren J. Sørensen

Comparative whole-genome analyses have demonstrated that horizontal gene transfer (HGT) provides a significant contribution to prokaryotic genome innovation. The evolution of specific prokaryotes is therefore tightly linked to the environment in which they live and the communal pool of genes available within that environment. Here we use the term supergenome to describe the set of all genes that a prokaryotic ‘individual’ can draw on within a particular environmental setting. Conjugative plasmids can be considered particularly successful entities within the communal pool, which have enabled HGT over large taxonomic distances. These plasmids are collections of discrete regions of genes that function as ‘backbone modules’ to undertake different aspects of overall plasmid maintenance and propagation. Conjugative plasmids often carry suites of ‘accessory elements’ that contribute adaptive traits to the hosts and, potentially, other resident prokaryotes within specific environmental niches. Insight into the evolution of plasmid modules therefore contributes to our knowledge of gene dissemination and evolution within prokaryotic communities. This communal pool provides the prokaryotes with an important mechanistic framework for obtaining adaptability and functional diversity that alleviates the need for large genomes of specialized ‘private genes’.


2002 ◽  
Vol 184 (7) ◽  
pp. 1859-1864 ◽  
Author(s):  
Hee-Youn Yang ◽  
Young-Woo Kim ◽  
Hyo-Ihl Chang

ABSTRACT The genome of temperate phage φFC1 integrates into the chromosome of Enterococcus faecalis KBL 703 via site-specific recombination. In this study, an integration vector containing the attP site and putative integrase gene mj1 of phage φFC1 was constructed. A 2,744-bp fragment which included the attP site and mj1 was inserted into a pUC19 derivative containing the cat gene to construct pEMJ1-1. E. faecalis KBL 707, which does not contain the bacteriophage but which has a putative attB site within its genome, could be transformed by pEMJ1-1. Southern hybridization, PCR amplification, and DNA sequencing revealed that pEMJ1-1 was integrated specifically at the putative attB site within the E. faecalis KBL 707 chromosome. This observation suggested that the 2,744-bp fragment carrying mj1 and the attP site of phage φFC1 was sufficient for site-specific recombination and that pEMJ1-1 could be used as a site-specific integration vector. The transformation efficiency of pEMJ1-1 was as high as 6 × 103 transformants/μg of DNA. In addition, a vector (pATTB1) containing the 290-bp attB region was constructed. pATTB1 was transformed into Escherichia coli containing a derivative of the pET14b vector carrying attP and mj1. This resulted in the formation of chimeric plasmids by site-specific recombination between the cloned attB and attP sequences. The results indicate that the integration vector system based on the site-specific recombination mechanism of phage φFC1 can be used for genetic engineering in E. faecalis and in other hosts.


2002 ◽  
Vol 184 (1) ◽  
pp. 177-182 ◽  
Author(s):  
Szabolcs Semsey ◽  
Béla Blaha ◽  
Krisztián Köles ◽  
László Orosz ◽  
Péter P. Papp

ABSTRACT The integrase protein of the Rhizobium meliloti 41 phage 16-3 has been classified as a member of the Int family of tyrosine recombinases. The site-specific recombination system of the phage belongs to the group in which the target site of integration (attB) is within a tRNA gene. Since tRNA genes are conserved, we expected that the target sequence of the site-specific recombination system of the 16-3 phage could occur in other species and integration could take place if the required putative host factors were also provided by the targeted cells. Here we report that a plasmid (pSEM167) carrying the attP element and the integrase gene (int) of the phage can integrate into the chromosomes of R. meliloti 1021 and eight other species. In all cases integration occurred at so-far-unidentified, putative proline tRNA (CGG) genes, indicating the possibility of their common origin. Multiple alignment of the sequences suggested that the location of the att core was different from that expected previously. The minimal attB was identified as a 23-bp sequence corresponding to the anticodon arm of the tRNA.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Roy Ummels ◽  
Abdallah M. Abdallah ◽  
Vincent Kuiper ◽  
Anouar Aâjoud ◽  
Marion Sparrius ◽  
...  

ABSTRACTConjugative plasmids have been identified in a wide variety of different bacteria, ranging from proteobacteria to firmicutes, and conjugation is one of the most efficient routes for horizontal gene transfer. The most widespread mechanism of plasmid conjugation relies on different variants of the type IV secretion pathway. Here, we describe the identification of a novel type of conjugative plasmid that seems to be unique for mycobacteria. Interestingly, while this plasmid is efficiently exchanged between different species of slow-growing mycobacteria, includingMycobacterium tuberculosis, it could not be transferred to any of the fast-growing mycobacteria tested. Genetic analysis of the conjugative plasmid showed the presence of a locus containing homologues of three type IV secretion system components and a relaxase. In addition, a new type VII secretion locus was present. Using transposon insertion mutagenesis, we show that in fact both these secretion systems are essential for conjugation, indicating that this plasmid represents a new class of conjugative plasmids requiring two secretion machineries. This plasmid could form a useful new tool to exchange or introduce DNA in slow-growing mycobacteria.IMPORTANCEConjugative plasmids play an important role in horizontal gene transfer between different bacteria and, as such, in their adaptation and evolution. This effect is most obvious in the spread of antibiotic resistance genes. Thus far, conjugation of natural plasmids has been described only rarely for mycobacterial species. In fact, it is generally accepted thatM. tuberculosisdoes not show any recent sign of horizontal gene transfer. In this study, we describe the identification of a new widespread conjugative plasmid that can also be efficiently transferred toM. tuberculosis. This plasmid therefore poses both a threat and an opportunity. The threat is that, through the acquisition of antibiotic resistance markers, this plasmid could start a rapid spread of antibiotic resistance genes between pathogenic mycobacteria. The opportunity is that we could use this plasmid to generate new tools for the efficient introduction of foreign DNA in slow-growing mycobacteria.


2016 ◽  
Vol 7 ◽  
Author(s):  
Sophie R. Ullrich ◽  
Carolina González ◽  
Anja Poehlein ◽  
Judith S. Tischler ◽  
Rolf Daniel ◽  
...  

2010 ◽  
Vol 54 (11) ◽  
pp. 4924-4926 ◽  
Author(s):  
Azmiza S. Jasni ◽  
Peter Mullany ◽  
Haitham Hussain ◽  
Adam P. Roberts

ABSTRACT Antibiotic-resistant Enterococcus faecalis and Clostridium difficile are responsible for nosocomial infections in humans, in which they inhabit the same niche. Here, we demonstrate transfer of the conjugative transposon Tn5397 from C. difficile 630 to E. faecalis JH2-2, the first reported gene transfer between these two bacteria. Furthermore, transfer from the E. faecalis EF20A transconjugant to the epidemic ribotype 027 C. difficile strain R20291 was also demonstrated. Tn5397 was shown to use a single specific target site in E. faecalis; it also has specific target sites in C. difficile. These experiments highlight the importance of continual monitoring for emerging resistances in these bacteria.


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Sofya K. Garushyants ◽  
Marat D. Kazanov ◽  
Mikhail S. Gelfand

2018 ◽  
Author(s):  
Peter Thorpe ◽  
Carmen M. Escudero-Martinez ◽  
Peter J. A. Cock ◽  
D. Laetsch ◽  
Sebastian Eves-van den Akker ◽  
...  

AbstractBackgroundAphids are a diverse group of taxa that contain hundreds of agronomically important species, which vary in their host range and pathogenicity. However, the genome evolution underlying agriculturally important aphid traits is not well understood.ResultsWe generated highly-contiguous draft genome assemblies for two aphid species: the narrow host range Myzus cerasi, and the cereal specialist Rhopalosiphum padi. Using a de novo gene prediction pipeline on both these genome assemblies, and those of three related species (Acyrthosiphon pisum, D. noxia and M. persicae), we show that aphid genomes consistently encode similar gene numbers, and in the case of A. pisum, fewer and larger genes than previously reported. We compare gene content, gene duplication, synteny, horizontal gene transfer events, and putative effector repertoires between these five species to understand the genome evolution of globally important plant parasites.Aphid genomes show signs of relatively distant gene duplication, and substantial, relatively recent, gene birth, and are characterized by disparate gain and loss of genes acquired by horizontal gene transfer (HGT). Such HGT events account for approximately 1% of loci, and contribute to the protein-coding content of aphid species analysed. Putative effector repertoires, originating from duplicated loci, putative HGT events and other loci, have an unusual genomic organisation and evolutionary history. We identify a highly conserved effector-pair that is tightly genetically-linked in all aphid species. In R. padi, this effector pair is tightly transcriptionally-linked, and shares a transcriptional control mechanism with a subset of approximately 50 other putative effectors distributed across the genome.ConclusionsThis study extends our current knowledge on the evolution of aphid genomes and reveals evidence for a shared control mechanism, which underlies effector expression, and ultimately plant parasitism.


1999 ◽  
Vol 65 (2) ◽  
pp. 752-758 ◽  
Author(s):  
Lone Brøndsted ◽  
Karin Hammer

ABSTRACT Previously we showed that only one phage-expressed protein (Orf1), a 425-bp region upstream of the orf1 gene (presumably encoding a promoter), and the attP region are necessary and also sufficient for integration of the bacteriophage TP901-1 genome into the chromosome of Lactococcus lactis subsp.cremoris (B. Christiansen, L. Brøndsted, F. K. Vogensen, and K. Hammer, J. Bacteriol. 178:5164–5173, 1996). In this work, a further analysis of the phage-encoded elements involved in integration was performed. Here we demonstrate that even when theorf1 gene is separated from the attP region, the Orf1 protein is able to promote site-specific integration of anattP-carrying plasmid into the attB site on theL. lactis subsp. cremoris chromosome. Furthermore, the first detailed deletion analysis of anattP region of a phage infecting lactic acid bacteria was carried out. We show that a fragment containing 56 bp of theattP region, including the core, is sufficient for the site-specific integration of a nonreplicating plasmid into the chromosome of L. lactis subsp. cremoriswhen the orf1 gene is donated in trans. The functional 56-bp attP region of TP901-1 is substantially smaller than minimal attP regions identified for other phages. Based on the deletion analysis, several repeats located within the attP region seem to be necessary for site-specific integration of the temperate bacteriophage TP901-1. By use of the integrative elements (attP and orf1) expressed by the temperate lactococcal bacteriophage TP901-1, a system for obtaining stable chromosomal single-copy transcriptional fusions inL. lactis was constructed. Two promoter-reporter integration vectors containing the reporter gene gusA orlacLM, encoding β-glucuronidase or β-galactosidase, respectively, were constructed. Immediately upstream of both genes are found translational stop codons in all three reading frames as well as multiple restriction enzyme sites suitable for cloning of the promoter of interest. By transformation of L. lactis subsp.cremoris MG1363 containing the integrase gene on a replicating plasmid, the promoter-reporter integration vectors integrated with a high frequency site specifically into the chromosomal attachment site attB used by bacteriophage TP901-1.


Sign in / Sign up

Export Citation Format

Share Document