G-protein-coupled receptor accessory proteins: their potential role in future drug discovery

2004 ◽  
Vol 32 (5) ◽  
pp. 888-891 ◽  
Author(s):  
J. Presland

Historically, the activation and inhibition of GPCR (G-protein-coupled receptor) function have been a very successful avenue for drug discovery and development. However, it is clear that receptors do not function in isolation but are impacted by other proteins. These proteins may alter either binding or functional responses. Identification and study of these interactions have grown rapidly in recent years and continue to do so, resulting in a plethora of potential receptor–protein connections. These associations can be regarded as alternative intervention points to modulate GPCR function and may not only provide alternative ways to modify receptor activity but also to exploit new chemical space for drug-like molecules. Such interactions may account for side-effects or undesirable properties associated with otherwise well-validated GPCR targets. Understanding and/or intervening in these interactions may allow scientists to progress those targets that may have been deemed unsuitable for therapeutic intervention. The present study reviews the opportunities for utilizing receptor interacting proteins as potential drug targets and the issues associated with them.

2019 ◽  
Vol 20 (17) ◽  
pp. 4237 ◽  
Author(s):  
Zou ◽  
Ewalt ◽  
Ng

G protein-coupled receptors (GPCRs) are critical drug targets. GPCRs convey signals from the extracellular to the intracellular environment through G proteins. Some ligands that bind to GPCRs activate different downstream signaling pathways. G protein activation, or -arrestin biased signaling, involves ligands binding to receptors and stabilizing conformations that trigger a specific pathway. -arrestin biased signaling has become a hot target for structure-based drug discovery. However, challenges include that there are few crystal structures available in the Protein Data Bank and that GPCRs are highly dynamic. Hence, molecular dynamics (MD) simulations are especially valuable for obtaining detailed mechanistic information, including identification of allosteric sites and understanding modulators’ interactions with receptors and ligands. Here, we highlight recent MD simulation studies and enhanced sampling methods used to study biased G protein-coupled receptor signaling and their conformational dynamics as well as applications to drug discovery.


2021 ◽  
pp. 247255522097979
Author(s):  
Kyung-Soon Lee ◽  
Edelmar Navaluna ◽  
Nicole M. Marsh ◽  
Eric M. Janezic ◽  
Chris Hague

We have developed a novel reporter assay that leverages SNAP-epitope tag/near-infrared (NIR) imaging technology to monitor G protein-coupled receptor (GPCR) degradation in human cell lines. N-terminal SNAP-tagged GPCRs were subcloned and expressed in human embryonic kidney (HEK) 293 cells and then subjected to 24 h of cycloheximide (CHX)-chase degradation assays to quantify receptor degradation half-lives ( t1/2) using LICOR NIR imaging–polyacrylamide gel electrophoresis (PAGE) analysis. Thus far, we have used this method to quantify t1/2 for all nine adrenergic (ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRA2B, ADRA2C, ADRB1, ADRB2, ADRB3), five somatostatin (SSTR1, SSTR2, SSTR3, SSTR4, SSTR5), four chemokine (CXCR1, CXCR2, CXCR3, CXCR5), and three 5-HT2 (5HT2A, 5HT2B, 5HT2C) receptor subtypes. SNAP-GPCR-CHX degradation t1/2 values ranged from 0.52 h (ADRA1D) to 5.5 h (SSTR3). On the contrary, both the SNAP-tag alone and SNAP-tagged and endogenous β-actin were resistant to degradation with CHX treatment. Treatment with the proteasome inhibitor bortezomib produced significant but variable increases in SNAP-GPCR protein expression levels, indicating that SNAP-GPCR degradation primarily occurs through the proteasome. Remarkably, endogenous β2-adrenergic receptor/ADRB2 dynamic mass redistribution functional responses to norepinephrine were significantly decreased following CHX treatment, with a time course equivalent to that observed with the SNAP-ADRB2 degradation assay. We subsequently adapted this assay into a 96-well glass-bottom plate format to facilitate high-throughput GPCR degradation screening. t1/2 values quantified for the α1-adrenergic receptor subtypes (ADRA1A, ADRA1B, ADR1D) using the 96-well-plate format correlated with t1/2 values quantified using NIR-PAGE imaging analysis. In summary, this novel assay permits precise quantitative analysis of GPCR degradation in human cells and can be readily adapted to quantify degradation for any membrane protein of interest.


2019 ◽  
Vol 20 (6) ◽  
pp. 1402 ◽  
Author(s):  
Antonella Di Pizio ◽  
Maik Behrens ◽  
Dietmar Krautwurst

G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules.


2011 ◽  
Vol 63 (4) ◽  
pp. 901-937 ◽  
Author(s):  
John A. Salon ◽  
David T. Lodowski ◽  
Krzysztof Palczewski

2013 ◽  
Vol 110 (45) ◽  
pp. 18232-18237 ◽  
Author(s):  
S. N. Cooray ◽  
T. Gobbetti ◽  
T. Montero-Melendez ◽  
S. McArthur ◽  
D. Thompson ◽  
...  

2011 ◽  
Vol 11 (15) ◽  
pp. 1902-1924 ◽  
Author(s):  
Nicole A. Kratochwil ◽  
Silvia Gatti-McArthur ◽  
Marius C. Hoener ◽  
Lothar Lindemann ◽  
Andreas D. Christ ◽  
...  

2018 ◽  
Vol 13 (10) ◽  
pp. 933-947 ◽  
Author(s):  
Christos Iliopoulos-Tsoutsouvas ◽  
Rohit N. Kulkarni ◽  
Alexandros Makriyannis ◽  
Spyros P. Nikas

Sign in / Sign up

Export Citation Format

Share Document