Methods for studying global patterns of DNA binding by bacterial transcription factors and RNA polymerase

2008 ◽  
Vol 36 (4) ◽  
pp. 754-757 ◽  
Author(s):  
David C. Grainger ◽  
Stephen J.W. Busby

A major goal in the study of gene regulation is to untangle the transcription-regulatory networks of Escherichia coli and other ‘simple’ organisms. To do this we must catalogue the binding sites of all transcription factors. ChIP (chromatin immunoprecipitation), combined with DNA microarray analysis, is a powerful tool that permits global patterns of DNA binding to be measured. Here, we discuss the benefits of this approach and the application of this technique to bacterial systems.

2021 ◽  
Author(s):  
Ye Gao ◽  
Hyun Gyu Lim ◽  
Hans Verkler ◽  
Richard Szubin ◽  
Daniel Quach ◽  
...  

Bacteria regulate gene expression to adapt to changing environments through transcriptional regulatory networks (TRNs). Although extensively studied, no TRN is fully characterized since the identity and activity of all the transcriptional regulators that comprise a TRN are not known. Here, we experimentally evaluate 40 uncharacterized proteins in Escherichia coli K-12 MG1655, which were computationally predicted to be transcription factors (TFs). First, we used a multiplexed ChIP-exo assay to characterize genome-wide binding sites for these candidate TFs; 34 of them were found to be DNA-binding protein. We then compared the relative location between binding sites and RNA polymerase (RNAP). We found 48% (283/588) overlap between the TFs and RNAP. Finally, we used these data to infer potential functions for 10 of the 34 TFs with validated DNA binding sites and consensus binding motifs. These TFs were found to have various roles in regulating primary cellular processes in E. coli. Taken together, this study: (1) significantly expands the number of confirmed TFs, close to the estimated total of about 280 TFs; (2) predicts the putative functions of the newly discovered TFs, and (3) confirms the functions of representative TFs through mutant phenotypes.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
James P. R. Connolly ◽  
Nicky O’Boyle ◽  
Andrew J. Roe

ABSTRACT Bacterial gene regulation is governed by often hundreds of transcription factors (TFs) that bind directly to targets on the chromosome. Global studies of TFs usually make assumptions that regulatory targets within model strains will be conserved between members of the same species harboring common genetic targets. We recently discovered that YhaJ of Escherichia coli is crucial for virulence in two different pathotypes but binds to distinct regions of their genomes and regulates no common genes. This surprising result leads to strain-specific mechanisms of virulence regulation, but the implications for other E. coli pathotypes or commensals were unclear. Here, we report that heterogenous binding of YhaJ is widespread within the E. coli species. We analyzed the global YhaJ binding dynamics of four evolutionarily distinct E. coli isolates under two conditions, revealing 78 significant sites on the core genome as well as horizontally acquired loci. Condition-dependent dosage of YhaJ correlated with the number of occupied sites in vivo but did not significantly alter its enrichment at regions bound in both conditions, explaining the availability of this TF to occupy accessory sites in response to the environment. Strikingly, only ∼15% of YhaJ binding sites were common to all strains. Furthermore, differences in enrichment of uncommon sites were observed largely in chromosomal regions found in all strains and not explained exclusively by binding to strain-specific horizontally acquired elements or mutations in the DNA binding sequence. This observation suggests that intraspecies distinctions in TF binding dynamics are a widespread phenomenon and represent strain-specific gene regulatory potential. IMPORTANCE In bacterial cells, hundreds of transcription factors coordinate gene regulation and thus are a major driver of cellular processes. However, the immense diversity in bacterial genome structure and content makes deciphering regulatory networks challenging. This is particularly apparent for the model organism Escherichia coli as evolution has driven the emergence of species members with highly distinct genomes, which occupy extremely different niches in nature. While it is well-known that transcription factors must integrate horizontally acquired DNA into the regulatory network of the cell, the extent of regulatory diversity beyond single model strains is unclear. We have explored this concept in four evolutionarily distinct E. coli strains and show that a highly conserved transcription factor displays unprecedented diversity in chromosomal binding sites. Importantly, this diversity is not restricted to strain-specific DNA or mutation in binding sites. This observation suggests that strain-specific regulatory networks are potentially widespread within individual bacterial species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Inna A. Suvorova ◽  
Mikhail S. Gelfand

The IclR-family is a large group of transcription factors (TFs) regulating various biological processes in diverse bacteria. Using comparative genomics techniques, we have identified binding motifs of IclR-family TFs, reconstructed regulons and analyzed their content, finding co-occurrences between the regulated COGs (clusters of orthologous genes), useful for future functional characterizations of TFs and their regulated genes. We describe two main types of IclR-family motifs, similar in sequence but different in the arrangement of the half-sites (boxes), with GKTYCRYW3–4RYGRAMC and TGRAACAN1–2TGTTYCA consensuses, and also predict that TFs in 32 orthologous groups have binding sites comprised of three boxes with alternating direction, which implies two possible alternative modes of dimerization of TFs. We identified trends in site positioning relative to the translational gene start, and show that TFs in 94 orthologous groups bind tandem sites with 18–22 nucleotides between their centers. We predict protein–DNA contacts via the correlation analysis of nucleotides in binding sites and amino acids of the DNA-binding domain of TFs, and show that the majority of interacting positions and predicted contacts are similar for both types of motifs and conform well both to available experimental data and to general protein–DNA interaction trends.


2021 ◽  
Vol 49 (7) ◽  
pp. 3856-3875
Author(s):  
Marina Kulik ◽  
Melissa Bothe ◽  
Gözde Kibar ◽  
Alisa Fuchs ◽  
Stefanie Schöne ◽  
...  

Abstract The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


2011 ◽  
Vol 40 (8) ◽  
pp. 3524-3537 ◽  
Author(s):  
Ana I. Prieto ◽  
Christina Kahramanoglou ◽  
Ruhi M. Ali ◽  
Gillian M. Fraser ◽  
Aswin S. N. Seshasayee ◽  
...  

Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 40 ◽  
Author(s):  
Antonia Denis ◽  
Mario Alberto Martínez-Núñez ◽  
Silvia Tenorio-Salgado ◽  
Ernesto Perez-Rueda

In recent years, there has been a large increase in the amount of experimental evidence for diverse archaeal organisms, and these findings allow for a comprehensive analysis of archaeal genetic organization. However, studies about regulatory mechanisms in this cellular domain are still limited. In this context, we identified a repertoire of 86 DNA-binding transcription factors (TFs) in the archaeon Pyrococcus furiosus DSM 3638, that are clustered into 32 evolutionary families. In structural terms, 45% of these proteins are composed of one structural domain, 41% have two domains, and 14% have three structural domains. The most abundant DNA-binding domain corresponds to the winged helix-turn-helix domain; with few alternative DNA-binding domains. We also identified seven regulons, which represent 13.5% (279 genes) of the total genes in this archaeon. These analyses increase our knowledge about gene regulation in P. furiosus DSM 3638 and provide additional clues for comprehensive modeling of transcriptional regulatory networks in the Archaea cellular domain.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jungnam Cho ◽  
Jerzy Paszkowski

It is well documented that transposable elements (TEs) can regulate the expression of neighbouring genes. However, their ability to act in trans and influence ectopic loci has been reported rarely. We searched in rice transcriptomes for tissue-specific expression of TEs and found them to be regulated developmentally. They often shared sequence homology with co-expressed genes and contained potential microRNA-binding sites, which suggested possible contributions to gene regulation. In fact, we have identified a retrotransposon that is highly transcribed in roots and whose spliced transcript constitutes a target mimic for miR171. miR171 destabilizes mRNAs encoding the root-specific family of SCARECROW-Like transcription factors. We demonstrate that retrotransposon-derived transcripts act as decoys for miR171, triggering its degradation and thus results in the root-specific accumulation of SCARECROW-Like mRNAs. Such transposon-mediated post-transcriptional control of miR171 levels is conserved in diverse rice species.


1995 ◽  
Vol 15 (3) ◽  
pp. 1405-1421 ◽  
Author(s):  
C C Adams ◽  
J L Workman

To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo.


Sign in / Sign up

Export Citation Format

Share Document