The interaction of Nanoarchaeum equitans with Ignicoccus hospitalis: proteins in the contact site between two cells

2009 ◽  
Vol 37 (1) ◽  
pp. 127-132 ◽  
Author(s):  
Tillmann Burghardt ◽  
Benjamin Junglas ◽  
Frank Siedler ◽  
Reinhard Wirth ◽  
Harald Huber ◽  
...  

The two archaea Ignicoccus hospitalis and Nanoarchaeum equitans form a unique intimate association, the character of which is not yet fully understood. Electron microscopic investigations show that at least two modes of cell–cell interactions exist: (i) the two cells are interconnected via thin fibres; and (ii) the two cell surfaces are in direct contact with each other. In order to shed further light on the molecules involved, we isolated a protein complex, by using detergent-induced solubilization of cell envelopes, followed by a combination of chromatography steps. Analysis by MS and comparison with databases revealed that this fraction contained two dominant proteins, representing the respective major envelope proteins of the two archaea. In addition, a considerable set of membrane proteins is specifically associated with these proteins. They are now the focus of further biochemical and ultrastructural investigations.

2007 ◽  
Vol 190 (5) ◽  
pp. 1743-1750 ◽  
Author(s):  
Ulrike Jahn ◽  
Martin Gallenberger ◽  
Walter Paper ◽  
Benjamin Junglas ◽  
Wolfgang Eisenreich ◽  
...  

ABSTRACT Nanoarchaeum equitans and Ignicoccus hospitalis represent a unique, intimate association of two archaea. Both form a stable coculture which is mandatory for N. equitans but not for the host I. hospitalis. Here, we investigated interactions and mutual influence between these microorganisms. Fermentation studies revealed that during exponential growth only about 25% of I. hospitalis cells are occupied by N. equitans cells (one to three cells). The latter strongly proliferate in the stationary phase of I. hospitalis, until 80 to 90% of the I. hospitalis cells carry around 10 N. equitans cells. Furthermore, the expulsion of H2S, the major metabolic end product of I. hospitalis, by strong gas stripping yields huge amounts of free N. equitans cells. N. equitans had no influence on the doubling times, final cell concentrations, and growth temperature, pH, or salt concentration ranges or optima of I. hospitalis. However, isolation studies using optical tweezers revealed that infection with N. equitans inhibited the proliferation of individual I. hospitalis cells. This inhibition might be caused by deprivation of the host of cell components like amino acids, as demonstrated by 13C-labeling studies. The strong dependence of N. equitans on I. hospitalis was affirmed by live-dead staining and electron microscopic analyses, which indicated a tight physiological and structural connection between the two microorganisms. No alternative hosts, including other Ignicoccus species, were accepted by N. equitans. In summary, the data show a highly specialized association of N. equitans and I. hospitalis which so far cannot be assigned to a classical symbiosis, commensalism, or parasitism.


Author(s):  
G. Lehmpfuhl

Introduction In electron microscopic investigations of crystalline specimens the direct observation of the electron diffraction pattern gives additional information about the specimen. The quality of this information depends on the quality of the crystals or the crystal area contributing to the diffraction pattern. By selected area diffraction in a conventional electron microscope, specimen areas as small as 1 µ in diameter can be investigated. It is well known that crystal areas of that size which must be thin enough (in the order of 1000 Å) for electron microscopic investigations are normally somewhat distorted by bending, or they are not homogeneous. Furthermore, the crystal surface is not well defined over such a large area. These are facts which cause reduction of information in the diffraction pattern. The intensity of a diffraction spot, for example, depends on the crystal thickness. If the thickness is not uniform over the investigated area, one observes an averaged intensity, so that the intensity distribution in the diffraction pattern cannot be used for an analysis unless additional information is available.


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


1977 ◽  
Vol 55 (20) ◽  
pp. 2565-2573 ◽  
Author(s):  
Robert D. Slocum ◽  
Gary L. Floyd

The nature of the association between the basidiomycetous mycobiont and the blue-green phycobiont in two species of the tropical basidiolichen Dictyonema was investigated using Nomarski light optics and scanning and transmission electron microscopy. Although members of this family may exhibit either a homoiomerous or heteromerous type of thallus organization, the fungus–alga relationship at the cellular level is remarkably consistent. Scytonema filaments are intimately associated with appressorial hyphae of the mycobiont and with extensive intracellular hyphae, which appear to be unrelated to the basidiomycetous fungal symbiont. This is the first report of a lichen displaying an apparent dual fungal symbiosis with the algal host. Association with the intracellular fungus produces no discernible damage to the phycobiont and apparently does not interfere with the symbiosis involving the basidiomycetous fungus.


Sign in / Sign up

Export Citation Format

Share Document