scholarly journals Regulation of Vps4 ATPase activity by ESCRT-III

2009 ◽  
Vol 37 (1) ◽  
pp. 143-145 ◽  
Author(s):  
Brian A. Davies ◽  
Ishara F. Azmi ◽  
David J. Katzmann

MVB (multivesicular body) formation occurs when the limiting membrane of an endosome invaginates into the intraluminal space and buds into the lumen, bringing with it a subset of transmembrane cargoes. Exvagination of the endosomal membrane from the cytosol is topologically similar to the budding of retroviral particles and cytokinesis, wherein membranes bud away from the cytoplasm, and the machinery responsible for MVB sorting has been implicated in these phenomena. The AAA (ATPase associated with various cellular activities) Vps4 (vacuolar protein sorting 4) performs a critical function in the MVB sorting pathway. Vps4 appears to dissociate the ESCRTs (endosomal sorting complexes required for transport) from endosomal membranes during the course of MVB sorting, but it is unclear how Vps4 ATPase activity is synchronized with ESCRT release. We have investigated the mechanisms by which ESCRT components stimulate the ATPase activity of Vps4. These studies support a model wherein Vps4 activity is subject to spatial and temporal regulation via distinct mechanisms during MVB sorting.

2008 ◽  
Vol 19 (6) ◽  
pp. 2661-2672 ◽  
Author(s):  
Soomin Shim ◽  
Samuel A. Merrill ◽  
Phyllis I. Hanson

The AAA+ ATPase VPS4 plays an essential role in multivesicular body biogenesis and is thought to act by disassembling ESCRT-III complexes. VPS4 oligomerization and ATPase activity are promoted by binding to LIP5. LIP5 also binds to the ESCRT-III like protein CHMP5/hVps60, but how this affects its function remains unclear. Here we confirm that LIP5 binds tightly to CHMP5, but also find that it binds well to additional ESCRT-III proteins including CHMP1B, CHMP2A/hVps2–1, and CHMP3/hVps24 but not CHMP4A/hSnf7–1 or CHMP6/hVps20. LIP5 binds to a different region within CHMP5 than within the other ESCRT-III proteins. In CHMP1B and CHMP2A, its binding site encompasses sequences at the proteins' extreme C-termini that overlap with “MIT interacting motifs” (MIMs) known to bind to VPS4. We find unexpected evidence of a second conserved binding site for VPS4 in CHMP2A and CHMP1B, suggesting that LIP5 and VPS4 may bind simultaneously to these proteins despite the overlap in their primary binding sites. Finally, LIP5 binds preferentially to soluble CHMP5 but instead to polymerized CHMP2A, suggesting that the newly defined interactions between LIP5 and ESCRT-III proteins may be regulated by ESCRT-III conformation. These studies point to a role for direct binding between LIP5 and ESCRT-III proteins that is likely to complement LIP5's previously described ability to regulate VPS4 activity.


2019 ◽  
Vol 218 (10) ◽  
pp. 3336-3354 ◽  
Author(s):  
Yoshinori Takahashi ◽  
Xinwen Liang ◽  
Tatsuya Hattori ◽  
Zhenyuan Tang ◽  
Haiyan He ◽  
...  

The process of phagophore closure requires the endosomal sorting complex required for transport III (ESCRT-III) subunit CHMP2A and the AAA ATPase VPS4, but their regulatory mechanisms remain unknown. Here, we establish a FACS-based HaloTag-LC3 autophagosome completion assay to screen a genome-wide CRISPR library and identify the ESCRT-I subunit VPS37A as a critical component for phagophore closure. VPS37A localizes on the phagophore through the N-terminal putative ubiquitin E2 variant domain, which is found to be required for autophagosome completion but dispensable for ESCRT-I complex formation and the degradation of epidermal growth factor receptor in the multivesicular body pathway. Notably, loss of VPS37A abrogates the phagophore recruitment of the ESCRT-I subunit VPS28 and CHMP2A, whereas inhibition of membrane closure by CHMP2A depletion or VPS4 inhibition accumulates VPS37A on the phagophore. These observations suggest that VPS37A coordinates the recruitment of a unique set of ESCRT machinery components for phagophore closure in mammalian cells.


2004 ◽  
Vol 377 (3) ◽  
pp. 693-700 ◽  
Author(s):  
Jeremy W. PECK ◽  
Emma T. BOWDEN ◽  
Peter D. BURBELO

Snf7p (sucrose non-fermenting) and Vps20p (vacuolar protein-sorting) are small coil-coiled proteins involved in yeast MVB (multivesicular body) structure, formation and function. In the present study, we report the identification of three human homologues of yeast Snf7p, designated hSnf7-1, hSnf7-2 and hSnf7-3, and a single human Vps20p homologue, designated hVps20, that may have similar roles in humans. Immunofluorescence studies showed that hSnf7-1 and hSnf7-3 localized in large vesicular structures that also co-localized with late endosomal/lysosomal structures induced by overexpressing an ATPase-defective Vps4-A mutant. In contrast, overexpressed hVps20 showed a typical endosomal membrane-staining pattern, and co-expression of hVps20 with Snf7-1 dispersed the large Snf7-staining vesicles. Interestingly, overexpression of both hSnf7 and hVps20 proteins induced a post-endosomal defect in cholesterol sorting. To explore possible protein–protein interactions involving hSnf7 proteins, we used information from yeast genomic studies showing that yeast Snf7p can interact with proteins involved in MVB function. Using a glutathione S-transferase-capture approach with several mammalian homologues of such yeast Snf7p-interacting proteins, we found that all three hSnf7s interacted with mouse AIP1 [ALG-2 (apoptosis-linked gene 2) interacting protein 1], a mammalian Bro1p [BCK1 (bypass of C kinase)-like resistance to osmotic shock]-containing protein involved in cellular vacuolization and apoptosis. Whereas mapping experiments showed that the N-terminus of AIP1 containing both a Bro1 and an α-helical domain were required for interaction with hSnf7-1, Snf7-1 did not interact with another human Bro1-containing molecule, rhophilin-2. Co-immunoprecipitation experiments confirmed the in vivo interaction of hSnf7-1 and AIP1. Additional immunofluorescence experiments showed that hSnf7-1 recruited cytosolic AIP1 to the Snf7-induced vacuolar-like structures. Together these results suggest that mammalian Vps20, AIP1 and Snf7 proteins, like their yeast counterparts, play roles in MVB function.


2007 ◽  
Vol 18 (2) ◽  
pp. 646-657 ◽  
Author(s):  
Andrea J. Oestreich ◽  
Brian A. Davies ◽  
Johanna A. Payne ◽  
David J. Katzmann

The multivesicular body (MVB) sorting pathway impacts a variety of cellular functions in eukaryotic cells. Perhaps the best understood role for the MVB pathway is the degradation of transmembrane proteins within the lysosome. Regulation of cargo selection by this pathway is critically important for normal cell physiology, and recent advances in our understanding of this process have highlighted the endosomal sorting complexes required for transport (ESCRTs) as pivotal players in this reaction. To better understand the mechanisms of cargo selection during MVB sorting, we performed a genetic screen to identify novel factors required for cargo-specific selection by this pathway and identified the Mvb12 protein. Loss of Mvb12 function results in differential defects in the selection of MVB cargoes. A variety of analyses indicate that Mvb12 is a stable member of ESCRT-I, a heterologous complex involved in cargo selection by the MVB pathway. Phenotypes displayed upon loss of Mvb12 are distinct from those displayed by the previously described ESCRT-I subunits (vacuolar protein sorting 23, -28, and -37), suggesting a distinct function than these core subunits. These data support a model in which Mvb12 impacts the selection of MVB cargoes by modulating the cargo recognition capabilities of ESCRT-I.


2006 ◽  
Vol 172 (5) ◽  
pp. 705-717 ◽  
Author(s):  
Ishara Azmi ◽  
Brian Davies ◽  
Christian Dimaano ◽  
Johanna Payne ◽  
Debra Eckert ◽  
...  

In eukaryotes, the multivesicular body (MVB) sorting pathway plays an essential role in regulating cell surface protein composition, thereby impacting numerous cellular functions. Vps4, an ATPase associated with a variety of cellular activities, is required late in the MVB sorting reaction to dissociate the endosomal sorting complex required for transport (ESCRT), a requisite for proper function of this pathway. However, regulation of Vps4 function is not understood. We characterize Vta1 as a positive regulator of Vps4 both in vivo and in vitro. Vta1 promotes proper assembly of Vps4 and stimulates its ATPase activity through the conserved Vta1/SBP1/LIP5 region present in Vta1 homologues across evolution, including human SBP1 and Arabidopsis thaliana LIP5. These results suggest an evolutionarily conserved mechanism through which the disassembly of the ESCRT proteins, and thereby MVB sorting, is regulated by the Vta1/SBP1/LIP5 proteins.


2009 ◽  
Vol 37 (1) ◽  
pp. 156-160 ◽  
Author(s):  
Suman Lata ◽  
Guy Schoehn ◽  
Julianna Solomons ◽  
Ricardo Pires ◽  
Heinrich G. Göttlinger ◽  
...  

ESCRT-III (endosomal sorting complex required for transport III) is required for the formation and abscission of intraluminal endosomal vesicles, which gives rise to multivesicular bodies, budding of some enveloped viruses and cytokinesis. ESCRT-III is composed of 11 members in humans, which, except for one, correspond to the six ESCRT-III-like proteins in yeast. At least CHMP (charged multivesicular body protein) 2A and CHMP3 assemble into helical tubular structures that provide a platform for membrane interaction and VPS (vacuolar protein sorting) 4-catalysed effects leading to disassembly of ESCRT-III CHMP2A–CHMP3 polymers in vitro. Progress towards the understanding of the structures and function of ESCRT-III, its activation, its regulation by accessory factors and its role in abscission of membrane enveloped structures in concert with VPS4 are discussed.


2007 ◽  
Vol 18 (2) ◽  
pp. 636-645 ◽  
Author(s):  
Matt Curtiss ◽  
Charles Jones ◽  
Markus Babst

The endosomal sorting complex required for transport (ESCRT)-I protein complex functions in recognition and sorting of ubiquitinated transmembrane proteins into multivesicular body (MVB) vesicles. It has been shown that ESCRT-I contains the vacuolar protein sorting (Vps) proteins Vps23, Vps28, and Vps37. We identified an additional subunit of yeast ESCRT-I called Mvb12, which seems to associate with ESCRT-I by binding to Vps37. Transient recruitment of ESCRT-I to MVBs results in the rapid degradation of Mvb12. In contrast to mutations in other ESCRT-I subunits, which result in strong defects in MVB cargo sorting, deletion of MVB12 resulted in only a partial sorting phenotype. This trafficking defect was fully suppressed by overexpression of the ESCRT-II complex. Mutations in MVB12 did not affect recruitment of ESCRT-I to MVBs, but they did result in delivery of ESCRT-I to the vacuolar lumen via the MVB pathway. Together, these observations suggest that Mvb12 may function in regulating the interactions of ESCRT-I with cargo and other proteins of the ESCRT machinery to efficiently coordinate cargo sorting and release of ESCRT-I from the MVB.


2021 ◽  
Vol 220 (8) ◽  
Author(s):  
Chun-Che Tseng ◽  
Shirley Dean ◽  
Brian A. Davies ◽  
Ishara F. Azmi ◽  
Natalya Pashkova ◽  
...  

Endosomal sorting complexes required for transport (ESCRT-0, -I, -II, -III) execute cargo sorting and intralumenal vesicle (ILV) formation during conversion of endosomes to multivesicular bodies (MVBs). The AAA-ATPase Vps4 regulates the ESCRT-III polymer to facilitate membrane remodeling and ILV scission during MVB biogenesis. Here, we show that the conserved V domain of ESCRT-associated protein Bro1 (the yeast homologue of mammalian proteins ALIX and HD-PTP) directly stimulates Vps4. This activity is required for MVB cargo sorting. Furthermore, the Bro1 V domain alone supports Vps4/ESCRT–driven ILV formation in vivo without efficient MVB cargo sorting. These results reveal a novel activity of the V domains of Bro1 homologues in licensing ESCRT-III–dependent ILV formation and suggest a role in coordinating cargo sorting with membrane remodeling during MVB sorting. Moreover, ubiquitin binding enhances V domain stimulation of Vps4 to promote ILV formation via the Bro1–Vps4–ESCRT-III axis, uncovering a novel role for ubiquitin during MVB biogenesis in addition to facilitating cargo recognition.


2009 ◽  
Vol 37 (1) ◽  
pp. 195-199 ◽  
Author(s):  
Jeremy G. Carlton ◽  
Juan Martin-Serrano

The ESCRT (endosomal sorting complex required for transport) machinery consists of a number of cytosolic proteins that make up three functional subcomplexes: ESCRT-I, ESCRT-II and ESCRT-III. These proteins function in multivesicular body formation and cell division and are co-opted by enveloped retroviruses to facilitate viral egress. Analysis of these functions may help illuminate conserved mechanisms of ESCRT function.


2006 ◽  
Vol 84 (4) ◽  
pp. 551-564 ◽  
Author(s):  
Robert T. Mullen ◽  
Andrew W. McCartney ◽  
C. Robb Flynn ◽  
Graham S.T. Smith

Peroxisomes are highly dynamic organelles with regard to their metabolic functions, shapes, distribution, movements, and biogenesis. They are also important as sites for the development of some viral pathogens. It has long been known that certain members of the tombusvirus family recruit peroxisomes for viral RNA replication and that this process is accompanied by dramatic changes in peroxisome morphology, the most remarkable of which is the extensive inward vesiculation of the peroxisomal boundary membrane leading to the formation of a peroxisomal multivesicular body (pMVB). While it is unclear how the internal vesicles of a pMVB form, they appear to serve in effectively concentrating viral membrane-bound replication complexes and protecting nascent viral RNAs from host-cell defences. Here, we review briefly the biogenesis of peroxisomes and pMVBs and discuss recent studies that have begun to shed light on how components of the tombusvirus replicase exploit the molecular mechanisms involved in peroxisome membrane protein sorting. We also address the question of what controls invagination and vesicle formation at the peroxisomal membrane during pMVB biogenesis. We propose that tombusviruses exploit protein constituents of the class E vacuolar protein-sorting pathway referred to as ESCRT (endosomal sorting complex required for transport) in the formation of pMVBs. This new pMVB–ESCRT hypothesis reconciles current paradigms of pMVB biogenesis with the role of ESCRT in endosomal multivesicular body formation and the ability of enveloped RNA viruses, including HIV, to appropriate the ESCRT machinery to execute their budding programme from cells.


Sign in / Sign up

Export Citation Format

Share Document