Reproductive cross-talk: seed development in flowering plants

2010 ◽  
Vol 38 (2) ◽  
pp. 604-612 ◽  
Author(s):  
Moritz K. Nowack ◽  
Alexander Ungru ◽  
Katrine N. Bjerkan ◽  
Paul E. Grini ◽  
Arp Schnittger

Flowering plants have evolved to be a predominant life form on earth. A common principle of flowering plants and probably one of the main reasons for their evolutionary success is the rapid development of an embryo next to a supporting tissue called the endosperm. The embryo and the endosperm are protected by surrounding maternal tissues, the integuments, and the trinity of integuments, embryo and endosperm comprise the plant seed. For proper seed development, these three structures have to develop in a highly controlled and co-ordinated manner, representing a paradigm for cell–cell communication during development. Communication pathways between the endosperm and the seed coat are now beginning to be unravelled. Moreover, recently isolated mutants affecting plant reproduction have allowed a genetic dissection of seed development, and revealed that the embryo plays a previously unrecognized yet important role in co-ordinating seed development.

Microbiology ◽  
2006 ◽  
Vol 152 (2) ◽  
pp. 333-341 ◽  
Author(s):  
Susana Romao ◽  
Guido Memmi ◽  
Marco R. Oggioni ◽  
Marie-Claude Trombe

The ubiquitous protein LuxS with S-ribosylhomocysteinase activity is involved in S-adenosyl methionine detoxification, C-1 unit recycling and the production of autoinducers that allow the cell to sense and respond to cell density. Independent reports describe the impact of LuxS deficiency on Streptococcus pneumoniae virulence in the mouse. In vitro, LuxS deficiency confers discrete phenotypes. A combined approach using genetic dissection and mixed-culture experiments allowed the involvement of LuxS in the developmental physiology of S. pneumoniae to be investigated. Functional LuxS was found to be related on the one hand to down-regulation of competence, and on the other hand to attenuation of autolysis in cultures entering stationary phase. The competence phenotype of luxS mutant bacteria was complemented by media conditioned by competence-defective ComAB0 bacteria, but not by BSA. The autolytic phenotype was complemented by BSA, but not by conditioned supernatants. It is suggested that the impact of LuxS on competence, but not on autolysis, involves cell–cell communication. The phenotype of luxS mutant strains reveals a hierarchy in the competence regulatory networks of S. pneumoniae.


2018 ◽  
Vol 28 (4) ◽  
pp. 272-276 ◽  
Author(s):  
Katsunori Isobe ◽  
Hikaru Sugiyama ◽  
Katsura Tamamushi ◽  
Taito Shimizu ◽  
Kana Kobashi ◽  
...  

AbstractThe objective of this study was to evaluate the effect of day length after flowering on pollen tube elongation, embryo formation and seed development. The quinoa varieties used in this study were Amarilla de Marangani (valley type) and NL-6 (sea-level type). After sowing, the quinoa plants were cultivated in growth cabinets. From sowing to flowering, plants were exposed to a 15 h day length regime. After flowering, the plants were grown under either a 15 h or 11 h day length regime. The elongation of the pollen tube and the formation of the early embryo were not inhibited in either Amarilla de Marangani or NL-6 under the 11 or 15 h day length regimes. Although growth of the embryo in NL-6 was not inhibited by the 15 h day length regime after flowering, the same was not observed in the case for Amarilla de Marangani. In Amarilla de Marangani, seed diameter at 8 and 14 days after flowering under the 11 h day length regime was larger than that of seeds grown under the 15 h day length regime. Thus, the decrease in the number of seeds in Amarilla de Marangani grown under the 15 h day length regime may be caused by the suspension of embryo growth after fertilization.


2020 ◽  
Vol 71 (1) ◽  
pp. 517-546 ◽  
Author(s):  
Friederike Hater ◽  
Thomas Nakel ◽  
Rita Groß-Hardt

Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.


2010 ◽  
Vol 38 (2) ◽  
pp. 627-630 ◽  
Author(s):  
Mihaela-Luiza Márton ◽  
Thomas Dresselhaus

During the evolution of flowering plants, their sperm cells have lost mobility and are transported from the stigma to the female gametophyte via the pollen tube to achieve double fertilization. Pollen tube growth and guidance is largely governed by the maternal sporophytic tissues of the stigma, style and ovule. However, the last phase of the pollen tube path is under female gametophyte control and is expected to require extensive cell–cell communication events between both gametophytes. Until recently, little was known about the molecules produced by the female gametophyte that are involved in this process. In the present paper, we review the most recent development in this field and focus on the role of secreted candidate signalling ligands.


Sign in / Sign up

Export Citation Format

Share Document