communication events
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 1)

Genetics ◽  
2021 ◽  
Author(s):  
Yifang Liu ◽  
Joshua Shing Shun Li ◽  
Jonathan Rodiger ◽  
Aram Comjean ◽  
Helen Attrill ◽  
...  

Abstract Multicellular organisms rely on cell-cell communication to exchange information necessary for developmental processes and metabolic homeostasis. Cell-cell communication pathways can be inferred from transcriptomic datasets based on ligand-receptor (L-R) expression. Recently, data generated from single cell RNA sequencing (scRNA-seq) have enabled L-R interaction predictions at an unprecedented resolution. While computational methods are available to infer cell-cell communication in vertebrates such a tool does not yet exist for Drosophila. Here, we generated a high confidence list of L-R pairs for the major fly signaling pathways and developed FlyPhoneDB, a quantification algorithm that calculates interaction scores to predict L-R interactions between cells. At the FlyPhoneDB user interface, results are presented in a variety of tabular and graphical formats to facilitate biological interpretation. To demonstrate that FlyPhoneDB can effectively identify active ligands and receptors to uncover cell-cell communication events, we applied FlyPhoneDB to Drosophila scRNA-seq data sets from adult midgut, abdomen, and blood, and demonstrate that FlyPhoneDB can readily identify previously characterized cell-cell communication pathways. Altogether, FlyPhoneDB is an easy-to-use framework that can be used to predict cell-cell communication between cell types from scRNA-seq data in Drosophila.


2021 ◽  
Vol 1 (4) ◽  
pp. 183-189
Author(s):  
Sigit Tri Pambudi ◽  
Basuki Agus Suparno

This study focuses on an organizational development especially for an elementary school in which try to stabilize and adopt the changes of teaching and learning processes in relate to pandemic Covid 19 since it has been prevailing one year ago. Through Communicative Constitution of Organization (CCO) approach, it stressed on how elementary school as organization develop and adapt toward the uncertainty situation affected by pandemic covid 19. There are four locations which represent communication events in organization. First, membership negotiation, portraits how member of organization interact each other. Second, self- structuring, reflects how organization norms and culture were internalized within member of organization. Third, activity coordination- the way assignment was conducted and accomplished. It is an important thing in determine organization being successful. And finally, position of institution determines organization to the public. All has important roles to shape and develop organization being success.


Author(s):  
Laura E. Barnes

A better understanding of an individual’s smartphone use can help researchers to improve methods for early detection, evaluation, and intervention of anxiety disorders.For this reason, we present an exploratory study of behavioral markers extracted from smartphone data. We examine fine-grained behaviors before and after smartphone communication events across social anxiety levels. To discover behavioral markers, we model the smartphone as a linear dynamical system with the accelerometer data as output. In a two-week study of 52 college students, we find substantially different behavioral markers prior to and after outgoing phone calls when comparing individuals with high and low social anxiety.


2021 ◽  
Author(s):  
Cole Mombourquette ◽  
Dave Erickson ◽  
Tim Geldreich ◽  
Mark Ross ◽  
Eric Hudson ◽  
...  

Abstract The objective of this exploitation strategy was to evaluate fracture-driven interactions (FDI) between intervals within the Braeburn members of the Lower Charlie Lake formation. With the primary goal to determine if a single well can be drilled in the Middle Braeburn and effectively drain reserves from two previously distinct producing intervals. The target intervals in this study were separated by a boundary layer composed of interbedded anhydrite, siltstone, and dolomite layers. Wells were completed in sequence using cemented ball-drop fracturing, and high-viscosity friction reducer (HVFR) fluid systems. Diagnostics including pressure monitoring, fracture modelling, and tracers were employed to evaluate stimulation response between wells. Realtime downhole pressure monitors observed the non-producing upper wellbore, while the lower well produced. Fluid rheology determined viscosity changes for different HVFR loadings, and fracture modelling assessed the impact of anhydrite on fracture height at different fluid viscosities. Proppant tracers injected in the lower well were logged in both wellbores observing propped communication between layers. Fluid and pressure diagnostics were used to monitor effective drainage between wells over time. During completion of the lower well, two (2) notable pressure communication events were observed in the offsetting upper well. Following the logging applications performed on both wellbores the results displayed three (3) localized points along the offsetting lateral. At which, a propped communication event was observed within a one (1) meter radius of investigation from the offsetting wellbore. The heel-most propped communication event in the offsetting wellbore was correlated to one of two (2) observed pressure communication events. The two (2) other instances of propped communication did not correspond with an observed pressure event. Following the logging application, the lower well was flowed back and put onto production. During this production period, the upper well remained shut in. Subsequent fluid diagnostic responses have indicated an increasing FDI response, facilitating the flow of hydrocarbon from the upper to the lower wellbore. This communication was primarily observed near the heel of both wellbores. Based on the results of the diagnostic tracers, the fracture model was updated to provide a development tool that would be more predictive for fracture height growth around thin anhydrites in the Charlie Lake formation. The technique of fracture stimulation through the anhydrite layer can be used to reduce the total number of wells required to effectively drain the formation.


2021 ◽  
Author(s):  
David Sebastian Fischer ◽  
Anna Christina Schaar ◽  
Fabian J Theis

Tissue niches are sources of cellular variation and key to understanding both single-cell and tissue phenotypes. The interaction of a cell with its niche can be described through cell communication events. These events cannot be directly observed in molecular profiling assays of single cells and have to be inferred. However, computational models of cell communication and variance attribution defined on data from dissociated tissues suffer from multiple limitations with respect to their ability to define and to identify communication events. We address these limitations using spatial molecular profiling data with node-centric expression modeling (NCEM), a computational method based on graph neural networks which reconciles variance attribution and communication modeling in a single model of tissue niches. We use these models in varying complexity across spatial assays, such as immunohistochemistry and MERFISH, and biological systems to demonstrate that the statistical cell-cell dependencies discovered by NCEM are plausible signatures of known molecular processes underlying cell communication. We identify principles of tissue organisation as cell communication events across multiple datasets using interpretation mechanisms. In the primary motor cortex, we found gene expression variation that is due to niche composition variation across cortical depth. Using the same approach, we also identified niche-dependent cell state variation in CD8 T cells from inflamed colon and colorectal cancer. Finally, we show that NCEMs can be extended to mixed models of explicit cell communication events and latent intrinsic sources of variation in conditional variational autoencoders to yield holistic models of cellular variation in spatial molecular profiling data. Altogether, this graphical model of cellular niches is a step towards understanding emergent tissue phenotypes.


2021 ◽  
Author(s):  
Yifang Liu ◽  
Yanhui Hu ◽  
Joshua Shing Shun Li ◽  
Jonathan Rodiger ◽  
Aram Comjean ◽  
...  

Multicellular organisms rely on cell-cell communication to exchange information necessary for developmental processes and metabolic homeostasis. Cell-cell communication pathways can be inferred from transcriptomic datasets based on ligand-receptor (L-R) expression. Recently, data generated from single cell RNA sequencing (scRNA-seq) have enabled L-R interaction predictions at an unprecedented resolution. While computational methods are available to infer cell-cell communication in vertebrates such a tool does not yet exist for Drosophila. Here, we generated a high confidence list of L-R pairs for the major fly signaling pathways and developed FlyPhoneDB, a quantification algorithm that calculates interaction scores to predict L-R interactions between cells. At the FlyPhoneDB user interface, results are presented in a variety of tabular and graphical formats to facilitate biological interpretation. To demonstrate that FlyPhoneDB can effectively identify active ligands and receptors to uncover cell-cell communication events, we applied FlyPhoneDB to Drosophila scRNA-seq data sets from adult midgut, abdomen, and blood, and demonstrate that FlyPhoneDB can readily identify previously characterized cell-cell communication pathways. Altogether, FlyPhoneDB is an easy-to-use framework that can be used to predict cell-cell communication between cell types from scRNA-seq data in Drosophila.


2021 ◽  
Vol 8 (01) ◽  
pp. 295-303
Author(s):  
I Wayan Wirta ◽  
Ida Bagus Putu Supriadi ◽  
Ida Ayu Kartika Maharani

The aim of the research is to identify and interpret field data on subcultures, total communication approaches, communication components forming communication events, patterns and communication skills of deaf children at the research site. Three important things have been identified in this research. First the subculture and overall communication approach of deaf children has been identified as a typical culture of deaf children in SLB Negeri 1 Tabanan. Second, the dominant communication components shaping the communication events of deaf children in SLB Negeri 1 Tabanan are (1) Settings, including the ideal distance to communicate, physical asp. The three patterns and communication skills of deaf children in SLB Negeri Tabanan identified were (1) patterns of communication between deaf children and normal people and (2) patterns of communication between deaf children and deaf children. The patterns of communication with normal people are divided into patterns of communication with older people and patterns of communication with peers.


2021 ◽  
Author(s):  
Daniel Dimitrov ◽  
Dénes Türei ◽  
Charlotte Boys ◽  
James S. Nagai ◽  
Ricardo O. Ramirez Flores ◽  
...  

The growing availability of single-cell data has sparked an increased interest in the inference of cell-cell communication from this data. Many tools have been developed for this purpose. Each of them consists of a resource of intercellular interactions prior knowledge and a method to predict potential cell-cell communication events. Yet the impact of the choice of resource and method on the resulting predictions is largely unknown. To shed light on this, we created a framework, available at https://github.com/saezlab/ligrec_decoupler, to facilitate a comparative assessment of methods for inferring cell-cell communication from single cell transcriptomics data and then compared 15 resources and 6 methods. We found few unique interactions and a varying degree of overlap among the resources, and observed uneven coverage in terms of pathways and biological categories. We analysed a colorectal cancer single cell RNA-Seq dataset using all possible combinations of methods and resources. We found major differences among the highest ranked intercellular interactions inferred by each method even when using the same resources. The varying predictions lead to fundamentally different biological interpretations, highlighting the need to benchmark resources and methods.


Author(s):  
Anjali Joseph ◽  
Kapil Chalil Madathil ◽  
Roxana Jafarifiroozabadi ◽  
Hunter Rogers ◽  
Sahar Mihandoust ◽  
...  

Objective The purpose of this study is to understand the communication among care teams during telemedicine-enabled stroke consults in an ambulance. Background Telemedicine can have a significant impact on acute stroke care by enabling timely intervention in an ambulance before a patient reaches the hospital. However, limited research has been conducted on understanding and supporting team communication during the care delivery process for telemedicine-enabled stroke care in an ambulance. Method Video recordings of 13 simulated stroke telemedicine consults conducted in an ambulance were coded to document the tasks, communication events, and flow disruptions during the telemedicine-enabled stroke care delivery process. Results The majority (82%) of all team interactions in telemedicine-enabled stroke care involved verbal interactions among team members. The neurologist, patient, and paramedic were almost equally involved in team interactions during stroke care, though the neurologist initiated 48% of all verbal interactions. Disruptions were observed in 8% of interactions, and communication-related issues contributed to 44%, with interruptions and environmental hazards being other reasons for disruptions in interactions during telemedicine-enabled stroke care. Conclusion Successful telemedicine-enabled stroke care involves supporting both verbal and nonverbal communication among all team members using video and audio systems to provide effective coverage of the patient for the clinicians as well as vice versa. Application This study provides a deeper understanding of team interactions during telemedicine-enabled stroke care that is essential for designing effective systems to support teamwork.


2021 ◽  
Author(s):  
N Taghdiri ◽  
D Calcagno ◽  
Z Fu ◽  
K Huang ◽  
RH Kohler ◽  
...  

ABSTRACTInterconnected cells are responsible for emergent functions ranging from cognition in the brain to cyclic contraction in the heart. In electrically excitable cells, methods for studying cell communication are highly advanced, but in non-excitable cells, generalized methods for studying cell communication are less mature. Immune cells have generally been classified as non-excitable cells with diverse pathophysiologic roles that span every tissue in the body, yet little is known about their interconnectedness because assays are destructive and have low temporal resolution. In this work, we hypothesize that non-excitable immune cells are functionally interconnected in previously unrecognized cell communication networks. To test the hypothesis, we created a hematopoietic calcium reporter mouse (Csf1r-Cre × GCaMP5) and non-destructively quantified the spatiotemporal dynamics of intracellular calcium in vitro and in vivo. In vitro, bone marrow derived macrophages calcium reporters reveal that fatal immune stimulatory DNA-sensing induces rapid intercellular communication to neighboring cells. In vivo, using intravital microscopy through a dorsal window chamber in the context of MC38-H2B-mCherry tumors, Csf1r-GCaMP5 reporters exhibit spatiotemporal dynamics consistent with cell communication. We present a theoretical framework and analysis pipeline for identifying spatiotemporal locations of “excess synchrony” of calcium spiking as a means of inferring previously unrecognized cell communication events. Together, these methods provide a toolkit for investigating known and as-yet-undiscovered cell communication events in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document