double fertilization
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 32)

H-INDEX

31
(FIVE YEARS 2)

2022 ◽  
Vol 951 (1) ◽  
pp. 012072
Author(s):  
R K Zuhro ◽  
H A Dewanto ◽  
A Suyadi ◽  
T Pribadi ◽  
O D Hadjoeningtijas ◽  
...  

Abstract Endosperm as a result of double fertilization in Angiospermae shows high level chromosomes and polyploidy. It is also considered as dead tissue that unable to be generated to form plantlet. The aim of this research is to determine the effect of kinetin and 2,4-Dichlorophenoxyacetic acid (2,4-D) in induction of callus formation of mountain papaya. This research used A factorial randomized block design with 18 groups, 1 fruit was used for 1 experimental group. Culture using Murashige and Skog (MS) media with combination of three level of kinetin (0, 2, 4 mgL-1) and six level of 2,4-D (0, 1, 2, 3, 4, 5 mgL-1). Maximum endosperm callus induction (0.88%) was achieved from endosperm explant cultured on MS medium fortified with 2.0 mgL-1 Kinetin and 4.0 mgL-1 2,4-D. The fastest day induction (24,66 day) was observed with 5.0 mg L-1 2,4-D. The maximum number of browning (0,10) was induced by 2.0 mgL-1 Kinetin and 5.0 mgL-1 2,4-D. Combination Kinetin and 2,4-D proved could induces callus formation from mountain papaya endosperm.


2021 ◽  
Vol 22 (23) ◽  
pp. 12850
Author(s):  
Li You ◽  
Li Yu ◽  
Ronghong Liang ◽  
Ruhao Sun ◽  
Fan Hu ◽  
...  

Double fertilization is a key determinant of grain yield, and the failure of fertilization during hybridization is one important reason for reproductive isolation. Therefore, fertilization has a very important role in the production of high-yield and well-quality hybrid of rice. Here, we used RNA sequencing technology to study the change of the transcriptome during double fertilization with the help of the mutant fertilization barrier (feb) that failed to finish fertilization process and led to seed abortion. The results showed that 1669 genes were related to the guided growth of pollen tubes, 332 genes were involved in the recognition and fusion of the male–female gametes, and 430 genes were associated with zygote formation and early free endosperm nuclear division. Among them, the genes related to carbohydrate metabolism; signal transduction pathways were enriched in the guided growth of pollen tubes, the genes involved in the photosynthesis; fatty acid synthesis pathways were activated by the recognition and fusion of the male–female gametes; and the cell cycle-related genes might play an essential role in zygote formation and early endosperm nuclear division. Furthermore, among the 1669 pollen tube-related genes, it was found that 7 arabinogalactan proteins (AGPs), 1 cysteine-rich peptide (CRP), and 15 receptor-like kinases (RLKs) were specifically expressed in anther, while 2 AGPs, 7 CRPs, and 5 RLKs in pistil, showing obvious unequal distribution which implied they might play different roles in anther and pistil during fertilization. These studies laid a solid foundation for revealing double fertilization mechanism of rice and for the follow-up investigation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alejandra G. González-Gutiérrez ◽  
Antonia Gutiérrez-Mora ◽  
Jorge Verdín ◽  
Benjamín Rodríguez-Garay

Asparagaceae’s large embryo sacs display a central cell nucleus polarized toward the chalaza, which means the sperm nucleus that fuses with it during double fertilization migrates an atypical long distance before karyogamy. Because of the size and inverted polarity of the central cell in Asparagaceae, we hypothesize that the second fertilization process is supported by an F-actin machinery different from the short-range F-actin structures observed in Arabidopsis and other plant models. Here, we analyzed the F-actin dynamics of Agave inaequidens, a classical Asparagaceae, before, during, and after the central cell fertilization. Several parallel F-actin cables, spanning from the central cell nucleus to the micropylar pole, and enclosing the vacuole, were observed. As fertilization progressed, a thick F-actin mega-cable traversing the vacuole appeared, connecting the central cell nucleus with the micropylar pole near the egg cell. This mega-cable wrapped the sperm nucleus in transit to fuse with the central cell nucleus. Once karyogamy finished, and the endosperm started to develop, the mega-cable disassembled, but new F-actin structures formed. These observations suggest that Asparagaceae, and probably other plant species with similar embryo sacs, evolved an F-actin machinery specifically adapted to support the migration of the fertilizing sperm nucleus within a large-sized and polarity-inverted central cell.


2021 ◽  
Vol 22 (22) ◽  
pp. 12230
Author(s):  
Kayleigh J. Robichaux ◽  
Ian S. Wallace

In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented, including the penetration of the stigmatic papillae, style, transmitting tract, and synergid cells as well as the ultimate fusion of sperm cells to the egg or central cell. Additionally, the pollen tube must maintain structural integrity in these compact environments, while responding to positional guidance cues that lead the pollen tube to its destination. Here, we discuss the nature of these physical barriers as well as efforts to genetically and cellularly identify the factors that allow pollen tubes to successfully, specifically, and quickly circumnavigate them.


Open Biology ◽  
2021 ◽  
Vol 11 (11) ◽  
Author(s):  
James A. Birchler ◽  
Hua Yang

The supernumerary B chromosome of maize is dispensable, containing no vital genes, and thus is variable in number and presence in lines of maize. In order to be maintained in populations, it has a drive mechanism consisting of nondisjunction at the pollen mitosis that produces the two sperm cells, and then the sperm with the two B chromosomes has a preference for fertilizing the egg as opposed to the central cell in the process of double fertilization. The sequence of the B chromosome coupled with B chromosomal aberrations has localized features involved with nondisjunction and preferential fertilization, which are present at the centromeric region. The predicted genes from the sequence have paralogues dispersed across all A chromosomes and have widely different divergence times suggesting that they have transposed to the B chromosome over evolutionary time followed by degradation or have been co-opted for the selfish functions of the supernumerary chromosome.


Author(s):  
Viktor Evgenievich Khrisanfov ◽  
Ekaterina Viktorovna Mikodina ◽  
Yulia Aleksandrovna Novosyolova ◽  
Evgeny Alekseevich Melchenkov ◽  
Vera Veniaminovna Kalmykova

It shows searching for a solution to the issue of the stock rebuilding of the Red List species — the Sakhalin sturgeon. It describes the results of the expedition to the Tumnin river aimed at brood fish procurement and optimization of the technology for its reproduction together with the brood fish grown in aquaculture. It lists the morphological characteristics and fish-cultural and bio-data of the spawner caught in the Tumnin river and the milters grown at the Anyuy Sturgeon Fish Hatchery. A method for the obtainment of reproductive products, hatching and juvenile fish growning is described. As a result of sampling for biopsy, it has been found that the coefficient of oocytesʼ nucleus polarization was 7.4 on the average. The hormonal preparation surfagon was used for sex products stimulation at males and a female. The female ovulated in 12 hours after permitting injection. It was managed to get 2,378 g eggs on the average 87.6 per cent of fertilization. The average ejaculate volume was 455 ml. The spermatozoon mobility at mean 14 °C temperature made up 208 sec. A double fertilization method was used at fertilization of an eggs part, moreover the eggs received were of a high piscicultural quality (99%). The average diameter of swollen eggs was maximum 6.8 mm and minimum 6.6 mm after fertilization. The larvae production made up to 30%, i.e. 27,850 of incubated eggs. 1000 ongrown fry were stocked into the Tumnin river, the last juveniles were directed to fish cultural farms of Russia with a view to form there recruitment-and-brood stocks. According to results of experimental works, done in the Anyuy Fish Hatchery, the first provisional technology of work was recommended on fertilized eggs production from the Sakhalin sturgeon spawners after the schema “a wild female + farmed males” by a method of a double fertilization with the increased exposition time.


2021 ◽  
Author(s):  
Alejandra G Gonzalez-Gutierrez ◽  
Antonia Gutierrez-Mora ◽  
Jorge Verdin ◽  
Benjamin Rodriguez-Garay

Asparagaceae's large embryo sacs display a central cell nucleus polarized toward the chalaza, which means the sperm nucleus that fuses it during double fertilization migrates a long distance before karyogamy. Because of the size and inverted polarity of the central cell in Asparagaceae, we hypothesize that the second fertilization process is supported by F-actin structures different from the short-range aster-like ones observed in Arabidopsis. Here, we analyzed the F-actin dynamics of Agave inaequidens, a typical Asparagaceae, before, during, and after central cell fertilization. Several parallel F-actin cables emerging from the nucleus within the central cell, enclosing the vacuole, and reaching the micropylar pole were observed. As fertilization progressed, a thick F-actin mega-cable traversing the vacuole appeared, connecting the central cell nucleus with the micropylar pole near the egg cell. This mega-cable wrapped the sperm nucleus in transit to fuse the central cell one. Once karyogamy finished, the mega-cable disassembled, but new F-actin structures formed during the endosperm development. These observations suggest that Asparagaceae, and probably other plant species with similar embryo sacs, evolved an F-actin machinery specifically adapted to support the migration of the fertilizing sperm nucleus within a large-sized and polarity-inverted central cell.


2021 ◽  
Vol 72 (1) ◽  
Author(s):  
Said Hafidh ◽  
David Honys

The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis—a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell–cell communication within the reproductive tissues. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 11 ◽  
Author(s):  
Shiori Nagahara ◽  
Hidenori Takeuchi ◽  
Tetsuya Higashiyama

During double fertilization in angiosperms, two male gametes (sperm cells), are released from a pollen tube into the receptive region between two female gametes; the egg cell and the central cell of the ovule. The sperm cells fertilize the egg cell and the central cell in a one-to-one manner to yield a zygote and an endosperm, respectively. The one-to-one distribution of the sperm cells to the two female gametes is strictly regulated, possibly via communication among the four gametes. Polyspermy block is the mechanism by which fertilized female gametes prevent fertilization by a secondary sperm cell, and has been suggested to operate in the egg cell rather than the central cell. However, whether the central cell also has the ability to avoid polyspermy during double fertilization remains unclear. Here, we assessed the one-to-one fertilization mechanism of the central cell by laser irradiation of the female gametes and live cell imaging of the fertilization process in Arabidopsis thaliana. We successfully disrupted an egg cell within the ovules by irradiation using a femtosecond pulse laser. In the egg-disrupted ovules, the central cell predominantly showed single fertilization by one sperm cell, suggesting that neither the egg cell nor its fusion with one sperm cell is necessary for one-to-one fertilization (i.e., monospermy) of the central cell. In addition, using tetraspore mutants possessing multiple sperm cell pairs in one pollen, we demonstrated that normal double fertilization was observed even when excess sperm cells were released into the receptive region between the female gametes. In ovules accepting four sperm cells, the egg cell never fused with more than one sperm cell, whereas half of the central cells fused with more than one sperm cell (i.e., polyspermy) even 1 h later. Our results suggest that the central cell can block polyspermy during double fertilization, although the central cell is more permissive to polyspermy than the egg cell. The potential contribution of polyspermy block by the central cell is discussed in terms of how it is involved in the one-to-one distribution of the sperm cells to two distinct female gametes.


2020 ◽  
Vol 117 (51) ◽  
pp. 32757-32763
Author(s):  
Mohammad Foteh Ali ◽  
Umma Fatema ◽  
Xiongbo Peng ◽  
Samuel W. Hacker ◽  
Daisuke Maruyama ◽  
...  

After eukaryotic fertilization, gamete nuclei migrate to fuse parental genomes in order to initiate development of the next generation. In most animals, microtubules control female and male pronuclear migration in the zygote. Flowering plants, on the other hand, have evolved actin filament (F-actin)-based sperm nuclear migration systems for karyogamy. Flowering plants have also evolved a unique double-fertilization process: two female gametophytic cells, the egg and central cells, are each fertilized by a sperm cell. The molecular and cellular mechanisms of how flowering plants utilize and control F-actin for double-fertilization events are largely unknown. Using confocal microscopy live-cell imaging with a combination of pharmacological and genetic approaches, we identified factors involved in F-actin dynamics and sperm nuclear migration inArabidopsis thaliana(Arabidopsis) andNicotiana tabacum(tobacco). We demonstrate that the F-actin regulator, SCAR2, but not the ARP2/3 protein complex, controls the coordinated active F-actin movement. These results imply that an ARP2/3-independent WAVE/SCAR-signaling pathway regulates F-actin dynamics in female gametophytic cells for fertilization. We also identify that the class XI myosin XI-G controls active F-actin movement in theArabidopsiscentral cell. XI-G is not a simple transporter, moving cargos along F-actin, but can generate forces that control the dynamic movement of F-actin for fertilization. Our results provide insights into the mechanisms that control gamete nuclear migration and reveal regulatory pathways for dynamic F-actin movement in flowering plants.


Sign in / Sign up

Export Citation Format

Share Document