Nitrosative stress in Escherichia coli: reduction of nitric oxide

2011 ◽  
Vol 39 (1) ◽  
pp. 213-215 ◽  
Author(s):  
Claire E. Vine ◽  
Jeffrey A. Cole

The ability of enteric bacteria to protect themselves against reactive nitrogen species generated by their own metabolism, or as part of the innate immune response, is critical to their survival. One important defence mechanism is their ability to reduce NO (nitric oxide) to harmless products. The highest rates of NO reduction by Escherichia coli K-12 were detected after anaerobic growth in the presence of nitrate. Four proteins have been implicated as catalysts of NO reduction: the cytoplasmic sirohaem-containing nitrite reductase, NirB; the periplasmic cytochrome c nitrite reductase, NrfA; the flavorubredoxin NorV and its associated oxidoreductase, NorW; and the flavohaemoglobin, Hmp. Single mutants defective in any one of these proteins and even the mutant defective in all four proteins reduced NO at the same rate as the parent. Clearly, therefore, there are mechanisms of NO reduction by enteric bacteria that remain to be characterized. Far from being minor pathways, the currently unknown pathways are adequate to sustain almost optimal rates of NO reduction, and hence potentially provide significant protection against nitrosative stress.

2007 ◽  
Vol 189 (12) ◽  
pp. 4410-4417 ◽  
Author(s):  
Nina Filenko ◽  
Stephen Spiro ◽  
Douglas F. Browning ◽  
Derrick Squire ◽  
Tim W. Overton ◽  
...  

ABSTRACT Successful pathogens must be able to protect themselves against reactive nitrogen species generated either as part of host defense mechanisms or as products of their own metabolism. The regulatory protein NsrR (a member of the Rrf2 family of transcription factors) plays key roles in this stress response. Microarray analysis revealed that NsrR represses nine operons encoding 20 genes in Escherichia coli MG1655, including the hmpA, ytfE, and ygbA genes that were previously shown to be regulated by NsrR. Novel NsrR targets revealed by this study include hcp-hcr (which were predicted in a recent bioinformatic study to be NsrR regulated) and the well-studied nrfA promoter that directs the expression of the periplasmic respiratory nitrite reductase. Conversely, transcription from the ydbC promoter is strongly activated by NsrR. Regulation of the nrf operon by NsrR is consistent with the ability of the periplasmic nitrite reductase to reduce nitric oxide and hence protect against reactive nitrogen species. Gel retardation assays were used to show that both FNR and NarL bind to the hcp promoter. The expression of hcp and the contiguous gene hcr is not induced by hydroxylamine. As hmpA and ytfE encode a nitric oxide reductase and a mechanism to repair iron-sulfur centers damaged by nitric oxide, the demonstration that hcp-hcr, hmpA, and ytfE are the three transcripts most tightly regulated by NsrR highlights the possibility that the hybrid cluster protein, HCP, might also be part of a defense mechanism against reactive nitrogen stress.


2019 ◽  
Vol 87 (9) ◽  
Author(s):  
Takeshi Shimizu ◽  
Akio Matsumoto ◽  
Masatoshi Noda

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) has at least three enzymes, NorV, Hmp, and Hcp, that act independently to lower the toxicity of nitric oxide (NO), a potent antimicrobial molecule. This study aimed to reveal the cooperative roles of these defensive enzymes in EHEC against nitrosative stress. Under anaerobic conditions, combined deletion of all three enzymes significantly increased the NO sensitivity of EHEC determined by the growth at late stationary phase; however, the expression of norV restored the NO resistance of EHEC. On the other hand, the growth of Δhmp mutant EHEC was inhibited after early stationary phase, indicating that NorV and Hmp play a cooperative role in anaerobic growth. Under microaerobic conditions, the growth of Δhmp mutant EHEC was inhibited by NO, indicating that Hmp is the enzyme that protects cells from NO stress under microaerobic conditions. When EHEC cells were exposed to a lower concentration of NO, the NO level in bacterial cells of Δhcp mutant EHEC was higher than those of the other EHEC mutants, suggesting that Hcp is effective at regulating NO levels only at a low concentration. These findings of a low level of NO in bacterial cells with hcp indicate that the NO consumption activity of Hcp was suppressed by Hmp at a low range of NO concentrations. Taken together, these results show that the cooperative effects of NO-metabolizing enzymes are regulated by the range of NO concentrations to which the EHEC cells are exposed.


2002 ◽  
Vol 184 (11) ◽  
pp. 2987-2993 ◽  
Author(s):  
Muna F. Anjum ◽  
Tânia M. Stevanin ◽  
Robert C. Read ◽  
James W. B. Moir

ABSTRACT Neisseria meningitidis, the causative agent of meningococcal disease in humans, is likely to be exposed to nitrosative stress during natural colonization and disease. The genome of N. meningitidis includes the genes aniA and norB, predicted to encode nitrite reductase and nitric oxide (NO) reductase, respectively. These gene products should allow the bacterium to denitrify nitrite to nitrous oxide. We show that N. meningitidis can support growth microaerobically by the denitrification of nitrite via NO and that norB is required for anaerobic growth with nitrite. NorB and, to a lesser extent, the cycP gene product cytochrome c′ are able to counteract toxicity due to exogenously added NO. Expression of these genes by N. meningitidis during colonization and disease may confer protection against exogenous or endogenous nitrosative stress.


2002 ◽  
Vol 184 (16) ◽  
pp. 4640-4643 ◽  
Author(s):  
Matthew I. Hutchings ◽  
Neeraj Mandhana ◽  
Stephen Spiro

ABSTRACT The Escherichia coli norVW genes encode a flavorubredoxin and NADH:(flavo)rubredoxin reductase, respectively, which are involved in nitric oxide detoxification under anaerobic growth conditions. Here it is shown that the norVW genes also have a role in protection against reactive nitrogen intermediates generated from nitroprusside. Transcription from the norV promoter is activated by the presence of nitroprusside in the growth medium; activation requires the product of a divergently transcribed regulatory gene, norR.


2008 ◽  
Vol 190 (21) ◽  
pp. 7258-7267 ◽  
Author(s):  
Douglas F. Browning ◽  
Jeffrey A. Cole ◽  
Stephen J. W. Busby

ABSTRACT The Escherichia coli K-12 nir operon promoter can be fully activated by binding of the regulator of fumarate and nitrate reduction (FNR) to a site centered at position −41.5 upstream of the transcript start, and this activation is modulated by upstream binding of the integration host factor (IHF) and Fis (factor for inversion stimulation) proteins. Thus, transcription initiation is repressed by the binding of IHF and Fis to sites centered at position −88 (IHF I) and position −142 (Fis I) and activated by IHF binding to a site at position −115 (IHF II). Here, we have exploited mutational analysis and biochemistry to investigate the actions of IHF and Fis at these sites. We show that the effects of IHF and Fis are position dependent and that IHF II functions independently of IHF I and Fis I. Using in vitro assays, we report that IHF and Fis repress transcription initiation by interfering with RNA polymerase binding. Differences in the upstream IHF and Fis binding sites at the nir promoter in related enteric bacteria fix the level of nir operon expression under anaerobic growth conditions.


2007 ◽  
Vol 189 (21) ◽  
pp. 7539-7548 ◽  
Author(s):  
Hsia-Yin Lin ◽  
Peggy J. Bledsoe ◽  
Valley Stewart

ABSTRACT The facultative aerobe Escherichia coli K-12 can use respiratory nitrate ammonification to generate energy during anaerobic growth. The toxic compound nitric oxide is a by-product of this metabolism. Previous transcript microarray studies identified the yeaR-yoaG operon, encoding proteins of unknown function, among genes whose transcription is induced in response to nitrate, nitrite, or nitric oxide. Nitrate and nitrite regulate anaerobic respiratory gene expression through the NarX-NarL and NarQ-NarP two-component systems. All known Nar-activated genes also require the oxygen-responsive Fnr transcription activator. However, previous studies indicated that yeaR-yoaG operon transcription does not require Fnr activation. Here, we report results from mutational analyses demonstrating that yeaR-yoaG operon transcription is activated by phospho-NarL protein independent of the Fnr protein. The phospho-NarL protein binding site is centered at position −43.5 with respect to the transcription initiation site. Expression from the Shewanella oneidensis MR-1 nnrS gene promoter, cloned into E. coli, similarly was activated by phospho-NarL protein independent of the Fnr protein. Recently, yeaR-yoaG operon transcription was shown to be regulated by the nitric oxide-responsive NsrR repressor (N. Filenko et al., J. Bacteriol. 189:4410-4417, 2007). Our mutational analyses reveal the individual contributions of the Nar and NsrR regulators to overall yeaR-yoaG operon expression and document the NsrR operator centered at position −32. Thus, control of yeaR-yoaG operon transcription provides an example of overlapping regulation by nitrate and nitrite, acting through the Nar regulatory system, and nitric oxide, acting through the NsrR repressor.


2004 ◽  
Vol 186 (1) ◽  
pp. 192-199 ◽  
Author(s):  
Elizabeth Yohannes ◽  
D. Michael Barnhart ◽  
Joan L. Slonczewski

ABSTRACT During aerobic growth of Escherichia coli, expression of catabolic enzymes and envelope and periplasmic proteins is regulated by pH. Additional modes of pH regulation were revealed under anaerobiosis. E. coli K-12 strain W3110 was cultured anaerobically in broth medium buffered at pH 5.5 or 8.5 for protein identification on proteomic two-dimensional gels. A total of 32 proteins from anaerobic cultures show pH-dependent expression, and only four of these proteins (DsbA, TnaA, GatY, and HdeA) showed pH regulation in aerated cultures. The levels of 19 proteins were elevated at the high pH; these proteins included metabolic enzymes (DhaKLM, GapA, TnaA, HisC, and HisD), periplasmic proteins (ProX, OppA, DegQ, MalB, and MglB), and stress proteins (DsbA, Tig, and UspA). High-pH induction of the glycolytic enzymes DhaKLM and GapA suggested that there was increased fermentation to acids, which helped neutralize alkalinity. Reporter lac fusion constructs showed base induction of sdaA encoding serine deaminase under anaerobiosis; in addition, the glutamate decarboxylase genes gadA and gadB were induced at the high pH anaerobically but not with aeration. This result is consistent with the hypothesis that there is a connection between the gad system and GabT metabolism of 4-aminobutanoate. On the other hand, 13 other proteins were induced by acid; these proteins included metabolic enzymes (GatY and AckA), periplasmic proteins (TolC, HdeA, and OmpA), and redox enzymes (GuaB, HmpA, and Lpd). The acid induction of NikA (nickel transporter) is of interest because E. coli requires nickel for anaerobic fermentation. The position of the NikA spot coincided with the position of a small unidentified spot whose induction in aerobic cultures was reported previously; thus, NikA appeared to be induced slightly by acid during aeration but showed stronger induction under anaerobic conditions. Overall, anaerobic growth revealed several more pH-regulated proteins; in particular, anaerobiosis enabled induction of several additional catabolic enzymes and sugar transporters at the high pH, at which production of fermentation acids may be advantageous for the cell.


2006 ◽  
Vol 188 (3) ◽  
pp. 874-881 ◽  
Author(s):  
Diane M. Bodenmiller ◽  
Stephen Spiro

ABSTRACT Microarray studies of the Escherichia coli response to nitric oxide and nitrosative stress have suggested that additional transcriptional regulators of this response remain to be characterized. We identify here the product of the yjeB gene as a negative regulator of the transcription of the ytfE, hmpA and ygbA genes, all of which are known to be upregulated by nitrosative stress. Transcriptional fusions to the promoters of these genes were expressed constitutively in a yjeB mutant, indicating that all three are targets for repression by YjeB. An inverted repeat sequence that overlaps the −10 element of all three promoters is proposed to be a binding site for the YjeB protein. A similar inverted repeat sequence was identified in the tehA promoter, which is also known to be sensitive to nitrosative stress. The ytfE, hmpA, ygbA, and tehA promoters all caused derepression of a ytfE-lacZ transcriptional fusion when present in the cell in multiple copies, presumably by a repressor titration effect, suggesting the presence of functional YjeB binding sites in these promoters. However, YjeB regulation of tehA was weak, as judged by the activity of a tehA-lacZ fusion, perhaps because YjeB repression of tehA is masked by other regulatory mechanisms. Promoters regulated by YjeB could be derepressed by iron limitation, which is consistent with an iron requirement for YjeB activity. The YjeB protein is a member of the Rrf2 family of transcriptional repressors and shares three conserved cysteine residues with its closest relatives. We propose a regulatory model in which the YjeB repressor is directly sensitive to nitrosative stress. On the basis of similarity to the nitrite-responsive repressor NsrR from Nitrosomonas europaea, we propose that the yjeB gene of E. coli be renamed nsrR.


2006 ◽  
Vol 188 (21) ◽  
pp. 7449-7456 ◽  
Author(s):  
Douglas F. Browning ◽  
David J. Lee ◽  
Alan J. Wolfe ◽  
Jeffrey A. Cole ◽  
Stephen J. W. Busby

ABSTRACT The Escherichia coli K-12 nrf operon promoter can be activated fully by the FNR protein (regulator of fumarate and nitrate reduction) binding to a site centered at position −41.5. FNR-dependent transcription is suppressed by integration host factor (IHF) binding at position −54, and this suppression is counteracted by binding of the NarL or NarP response regulator at position −74.5. The E. coli acs gene is transcribed from a divergent promoter upstream from the nrf operon promoter. Transcription from the major acsP2 promoter is dependent on the cyclic AMP receptor protein and is modulated by IHF and Fis binding at multiple sites. We show that IHF binding to one of these sites, located at position −127 with respect to the nrf promoter, has a positive effect on nrf promoter activity. This activation is dependent on the face of the DNA helix, independent of IHF binding at other locations, and found only when NarL/NarP are not bound at position −74.5. Binding of NarL/NarP appears to insulate the nrf promoter from the effects of IHF. The acs-nrf regulatory region is conserved in other pathogenic E. coli strains and related enteric bacteria but differs in Salmonella enterica serovar Typhimurium.


2008 ◽  
Vol 190 (11) ◽  
pp. 3851-3858 ◽  
Author(s):  
Youngnyun Kim ◽  
L. O. Ingram ◽  
K. T. Shanmugam

ABSTRACT Under anaerobic growth conditions, an active pyruvate dehydrogenase (PDH) is expected to create a redox imbalance in wild-type Escherichia coli due to increased production of NADH (>2 NADH molecules/glucose molecule) that could lead to growth inhibition. However, the additional NADH produced by PDH can be used for conversion of acetyl coenzyme A into reduced fermentation products, like alcohols, during metabolic engineering of the bacterium. E. coli mutants that produced ethanol as the main fermentation product were recently isolated as derivatives of an ldhA pflB double mutant. In all six mutants tested, the mutation was in the lpd gene encoding dihydrolipoamide dehydrogenase (LPD), a component of PDH. Three of the LPD mutants carried an H322Y mutation (lpd102), while the other mutants carried an E354K mutation (lpd101). Genetic and physiological analysis revealed that the mutation in either allele supported anaerobic growth and homoethanol fermentation in an ldhA pflB double mutant. Enzyme kinetic studies revealed that the LPD(E354K) enzyme was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity of the appropriate PDH complex to NADH inhibition. The mutated forms of the PDH had a 10-fold-higher Ki for NADH than the native PDH. The lower sensitivity of PDH to NADH inhibition apparently increased PDH activity in anaerobic E. coli cultures and created the new ethanologenic fermentation pathway in this bacterium. Analogous mutations in the LPD of other bacteria may also significantly influence the growth and physiology of the organisms in a similar fashion.


Sign in / Sign up

Export Citation Format

Share Document