nitric oxide detoxification
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Darshan M. Sivaloganathan ◽  
Mark P. Brynildsen

Abstract Objective Bacteria are exposed to multiple concurrent antimicrobial stressors within phagosomes. Among the antimicrobials produced, hydrogen peroxide and nitric oxide are two of the most deleterious products. In a previous study, we discovered that when faced with both stressors simultaneously, Escherichia coli prioritized detoxification of hydrogen peroxide over nitric oxide. In this study, we investigated whether such a process was conserved in another bacterium, Pseudomonas aeruginosa. Results P. aeruginosa prioritized hydrogen peroxide detoxification in a dose-dependent manner. Specifically, hydrogen peroxide detoxification was unperturbed by the presence of nitric oxide, whereas larger doses of hydrogen peroxide produced longer delays in nitric oxide detoxification. Computational modelling revealed that the rate of nitric oxide consumption in co-treated cultures was biphasic, with cells entering the second phase of detoxification only after hydrogen peroxide was eliminated from the culture.


2021 ◽  
Vol 36 (3) ◽  
pp. n/a
Author(s):  
Mitsutaka Fukudome ◽  
Yuta Shimokawa ◽  
Shun Hashimoto ◽  
Yusuke Maesako ◽  
Nahoko Uchi-Fukudome ◽  
...  

Author(s):  
Giuseppe Ianiri ◽  
Marco A. Coelho ◽  
Fiorella Ruchti ◽  
Florian Sparber ◽  
Timothy J. McMahon ◽  
...  

AbstractThe skin of humans and animals is colonized by commensal and pathogenic fungi and bacteria that share this ecological niche and have established microbial interactions. Malassezia are the most abundant fungal skin inhabitant of warm-blooded animals, and have been implicated in skin diseases and systemic disorders, including Crohn’s disease and pancreatic cancer. Flavohemoglobin is a key enzyme involved in microbial nitrosative stress resistance and nitric oxide degradation. Comparative genomics and phylogenetic analyses within the Malassezia genus revealed that flavohemoglobin-encoding genes were acquired through independent horizontal gene transfer events from different donor bacteria that are part of the mammalian microbiome. Through targeted gene deletion and functional complementation in M. sympodialis, we demonstrated that bacterially-derived flavohemoglobins are cytoplasmic proteins required for nitric oxide detoxification and nitrosative stress resistance under aerobic conditions. RNAseq analysis revealed that endogenous accumulation of nitric oxide resulted in upregulation of genes involved in stress response, and downregulation of the MalaS7 allergen-encoding genes. Solution of the high-resolution X-ray crystal structure of Malassezia flavohemoglobin revealed features conserved with both bacterial and fungal flavohemoglobins. In vivo pathogenesis is independent of Malassezia flavohemoglobin. Lastly, we identified additional 30 genus- and species-specific horizontal gene transfer candidates that might have contributed to the evolution of this genus as the most common inhabitants of animal skin.Significance statementMalassezia species are the main fungal components of the mammalian skin microbiome and are associated with a number of skin disorders. Recently, Malassezia has also been found in association with Crohn’s Disease and with pancreatic cancer. The elucidation of the molecular bases of skin adaptation by Malassezia is critical to understand its role as commensal and pathogen. In this study we employed evolutionary, molecular, biochemical, and structural analyses to demonstrate that the bacterially-derived flavohemoglobins acquired by Malassezia through horizontal gene transfer resulted in a gain of function critical for nitric oxide detoxification and resistance to nitrosative stress. Our study underscores horizontal gene transfer as an important force modulating Malassezia evolution and niche adaptation.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 7 ◽  
Author(s):  
Robert K. Poole

Flavohaemoglobins were first described in yeast as early as the 1970s but their functions were unclear. The surge in interest in nitric oxide biology and both serendipitous and hypothesis-driven discoveries in bacterial systems have transformed our understanding of this unusual two-domain globin into a comprehensive, yet undoubtedly incomplete, appreciation of its pre-eminent role in nitric oxide detoxification. Here, I focus on research on the flavohaemoglobins of microorganisms, especially of bacteria, and update several earlier and more comprehensive reviews, emphasising advances over the past 5 to 10 years and some controversies that have arisen. Inevitably, in light of space restrictions, details of nitric oxide metabolism and globins in higher organisms are brief.


2016 ◽  
Vol 473 (3) ◽  
pp. 297-309 ◽  
Author(s):  
Juan J. Cabrera ◽  
Ana Salas ◽  
María J. Torres ◽  
Eulogio J. Bedmar ◽  
David J. Richardson ◽  
...  

We report a dual functional system for bacterial nitrate (NO3−) assimilation and nitric oxide (NO) detoxification. The assimilatory NO3− reductase (NasC) can generate nitric oxide (NO). Co-expression of an NO-detoxification system acts to counteract accumulation of cytotoxic NO during anaerobic NO3−-dependent growth.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49291 ◽  
Author(s):  
Ana Oliveira ◽  
Sandeep Singh ◽  
Axel Bidon-Chanal ◽  
Flavio Forti ◽  
Marcelo A. Martí ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document