eIF4E-binding proteins: new factors, new locations, new roles

2014 ◽  
Vol 42 (4) ◽  
pp. 1238-1245 ◽  
Author(s):  
Anastasiia Kamenska ◽  
Clare Simpson ◽  
Nancy Standart

The cap-binding translation initiation factor eIF4E (eukaryotic initiation factor 4E) is central to protein synthesis in eukaryotes. As an integral component of eIF4F, a complex also containing the large bridging factor eIF4G and eIF4A RNA helicase, eIF4E enables the recruitment of the small ribosomal subunit to the 5′ end of mRNAs. The interaction between eIF4E and eIF4G via a YXXXXLϕ motif is regulated by small eIF4E-binding proteins, 4E-BPs, which use the same sequence to competitively bind eIF4E thereby inhibiting cap-dependent translation. Additional eIF4E-binding proteins have been identified in the last 10–15 years, characterized by the YXXXXLϕ motif, and by interactions (many of which remain to be detailed) with RNA-binding proteins, or other factors in complexes that recognize the specific mRNAs. In the present article, we focus on the metazoan 4E-T (4E-transporter)/Cup family of eIF4E-binding proteins, and also discuss very recent examples in yeast, fruitflies and humans, some of which predictably inhibit translation, while others may result in mRNA decay or even enhance translation; altogether considerably expanding our understanding of the roles of eIF4E-binding proteins in gene expression regulation.

Open Biology ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 190072 ◽  
Author(s):  
Christine Clayton

In trypanosomes, RNA polymerase II transcription is polycistronic and individual mRNAs are excised by trans -splicing and polyadenylation. The lack of individual gene transcription control is compensated by control of mRNA processing, translation and degradation. Although the basic mechanisms of mRNA decay and translation are evolutionarily conserved, there are also unique aspects, such as the existence of six cap-binding translation initiation factor homologues, a novel decapping enzyme and an mRNA stabilizing complex that is recruited by RNA-binding proteins. High-throughput analyses have identified nearly a hundred regulatory mRNA-binding proteins, making trypanosomes valuable as a model system to investigate post-transcriptional regulation.


2018 ◽  
Author(s):  
Luisa M Arake de Tacca ◽  
Mia C Pulos ◽  
Stephen N Floor ◽  
Jamie Cate

Polypyrimidine tract-binding proteins (PTBPs) are RNA binding proteins that regulate a number of post-transcriptional events. Human PTBP1 transits between the nucleus and cytoplasm and is thought to regulate RNA processes in both. However, information about PTBP1 mRNA isoforms and regulation of PTPB1 expression remain incomplete. Here we mapped the major PTBP1 mRNA isoforms in HEK293T cells, and identified alternative 5' and 3' untranslated regions (5' UTRs, 3' UTRs) as well as alternative splicing patterns in the protein coding region. We also assessed how the observed PTBP1 mRNA isoforms contribute to PTBP1 expression in different phases of the cell cycle. Previously, PTBP1 mRNAs were shown to crosslink to eukaryotic translation initiation factor 3 (eIF3). We find that eIF3 binds differently to each PTBP1 mRNA isoform in a cell cycle-dependent manner. We also observe a strong correlation between eIF3 binding to PTBP1 mRNAs and repression of PTBP1 levels during the S phase of the cell cycle. Our results provide evidence of translational regulation of PTBP1 protein levels during the cell cycle, which may affect downstream regulation of alternative splicing and translation mediated by PTBP1 protein isoforms.


2017 ◽  
Vol 114 (24) ◽  
pp. 6310-6315 ◽  
Author(s):  
Richard W. P. Smith ◽  
Ross C. Anderson ◽  
Osmany Larralde ◽  
Joel W. S. Smith ◽  
Barbara Gorgoni ◽  
...  

Regulation of mRNA translation is a major control point for gene expression and is critical for life. Of central importance is the complex between cap-bound eukaryotic initiation factor 4E (eIF4E), eIF4G, and poly(A) tail-binding protein (PABP) that circularizes mRNAs, promoting translation and stability. This complex is often targeted to regulate overall translation rates, and also by mRNA-specific translational repressors. However, the mechanisms of mRNA-specific translational activation by RNA-binding proteins remain poorly understood. Here, we address this deficit, focusing on a herpes simplex virus-1 protein, ICP27. We reveal a direct interaction with PABP that is sufficient to promote PABP recruitment and necessary for ICP27-mediated activation. PABP binds several translation factors but is primarily considered to activate translation initiation as part of the PABP–eIF4G–eIF4E complex that stimulates the initial cap-binding step. Importantly, we find that ICP27-PABP forms a complex with, and requires the activity of, eIF4G. Surprisingly, ICP27–PABP–eIF4G complexes act independently of the effects of PABP-eIF4G on cap binding to promote small ribosomal subunit recruitment. Moreover, we find that a cellular mRNA-specific regulator, Deleted in Azoospermia-like (Dazl), also employs the PABP–eIF4G interaction in a similar manner. We propose a mechanism whereby diverse RNA-binding proteins directly recruit PABP, in a non–poly(A) tail-dependent manner, to stimulate the small subunit recruitment step. This strategy may be particularly relevant to biological conditions associated with hypoadenylated mRNAs (e.g., germ cells/neurons) and/or limiting cytoplasmic PABP (e.g., viral infection, cell stress). This mechanism adds significant insight into our knowledge of mRNA-specific translational activation and the function of the PABP–eIF4G complex in translation initiation.


Author(s):  
Kent E. Duncan

Both RNA-binding proteins (RBPs) and translation are increasingly implicated in several neurodegenerative diseases, but their specific roles in promoting disease are not yet fully defined. This chapter critically evaluates the evidence that altered translation of specific mRNAs mediated by RNA-binding proteins plays an important role in driving specific neurodegenerative diseases. First, diseases are discussed where a causal role for RNA-binding proteins in disease appears solid, but whether this involves altered translation is less clear. The main foci here are TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS) in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Subsequently, diseases are presented where altered translation is believed to contribute, but involvement of RNA-binding proteins is less clear. These include Huntington’s and other repeat expansion disorders such as fragile X tremor/ataxia syndrome (FXTAS), where repeat-induced non-AUG-initiated (RAN) translation is a focus. The potential contribution of both canonical and non-canonical RBPs to altered translation in Parkinson’s disease is discussed. The chapter closes by proposing key research frontiers for the field to explore and outlining methodological advances that could help to address them.


2021 ◽  
Vol 9 (3) ◽  
pp. 34
Author(s):  
Thomas E. Forman ◽  
Brenna J. C. Dennison ◽  
Katherine A. Fantauzzo

Cranial neural crest (NC) cells delaminate from the neural folds in the forebrain to the hindbrain during mammalian embryogenesis and migrate into the frontonasal prominence and pharyngeal arches. These cells generate the bone and cartilage of the frontonasal skeleton, among other diverse derivatives. RNA-binding proteins (RBPs) have emerged as critical regulators of NC and craniofacial development in mammals. Conventional RBPs bind to specific sequence and/or structural motifs in a target RNA via one or more RNA-binding domains to regulate multiple aspects of RNA metabolism and ultimately affect gene expression. In this review, we discuss the roles of RBPs other than core spliceosome components during human and mouse NC and craniofacial development. Where applicable, we review data on these same RBPs from additional vertebrate species, including chicken, Xenopus and zebrafish models. Knockdown or ablation of several RBPs discussed here results in altered expression of transcripts encoding components of developmental signaling pathways, as well as reduced cell proliferation and/or increased cell death, indicating that these are common mechanisms contributing to the observed phenotypes. The study of these proteins offers a relatively untapped opportunity to provide significant insight into the mechanisms underlying gene expression regulation during craniofacial morphogenesis.


2016 ◽  
Author(s):  
Shuya Li ◽  
Fanghong Dong ◽  
Yuexin Wu ◽  
Sai Zhang ◽  
Chen Zhang ◽  
...  

AbstractCharacterizing the binding behaviors of RNA-binding proteins (RBPs) is important for understanding their functional roles in gene expression regulation. However, current high-throughput experimental methods for identifying RBP targets, such as CLIP-seq and RNAcompete, usually suffer from the false positive and false negative issues. Here, we develop a deep boosting based machine learning approach, called DeBooster, to accurately model the binding sequence preferences and identify the corresponding binding targets of RBPs from CLIP-seq data. Comprehensive validation tests have shown that DeBooster can outperform other state-of-the-art approaches in predicting RBP targets and recover false negatives that are common in current CLIP-seq data. In addition, we have demonstrated several new potential applications of DeBooster in understanding the regulatory functions of RBPs, including the binding effects of the RNA helicase MOV10 on mRNA degradation, the influence of different binding behaviors of the ADAR proteins on RNA editing, as well as the antagonizing effect of RBP binding on miRNA repression. Moreover, DeBooster may provide an effective index to investigate the effect of pathogenic mutations in RBP binding sites, especially those related to splicing events. We expect that DeBooster will be widely applied to analyze large-scale CLIP-seq experimental data and can provide a practically useful tool for novel biological discoveries in understanding the regulatory mechanisms of RBPs.


Reproduction ◽  
2010 ◽  
Vol 139 (2) ◽  
pp. 381-393 ◽  
Author(s):  
Masashi Yamaji ◽  
Takashi Tanaka ◽  
Mayo Shigeta ◽  
Shinichiro Chuma ◽  
Yumiko Saga ◽  
...  

Mutations of RNA-binding proteins such as NANOS3, TIAL1, and DND1 in mice have been known to result in the failure of survival and/or proliferation of primordial germ cells (PGCs) soon after their fate is specified (around embryonic day (E) 8.0), leading to the infertility of these animals. However, the mechanisms of actions of these RNA-binding proteins remain largely unresolved. As a foundation to explore the role of these RNA-binding proteins in germ cells, we established a novel transgenic reporter strain that expresses NANOS3 fused with EGFP under the control of Nanos3 regulatory elements. NANOS3–EGFP exhibited exclusive expression in PGCs as early as E7.25, and continued to be expressed in female germ cells until around E14.5 and in male germ cells throughout the fetal period with declining expression levels after E16.5. NANOS3–EGFP resumed strong expression in postnatal spermatogonia and continued to be expressed in undifferentiated spermatogonial cells in adults. Importantly, the Nanos3–EGFP transgene rescued the sterile phenotype of Nanos3 homozygous mutants, demonstrating the functional equivalency of NANOS3–EGFP with endogenous NANOS3. We found that throughout germ cell development, a predominant amount of  NANOS3–EGFP co-localized with TIAL1 (also known as TIAR) and phosphorylated eukaryotic initiation factor 2α, markers for the stress granules, whereas a fraction of it showed co-localization with DCP1A, a marker for the processing bodies. On the other hand, NANOS3–EGFP did not co-localize with Tudor domain-containing protein 1, a marker for the intermitochondrial cements, in spermatogenic cells. These findings unveil the presence of distinct posttranscriptional regulations in PGCs soon after their specification, for which RNA-binding proteins such as NANOS3 and TIAL1 would play critical functions.


2005 ◽  
Vol 33 (6) ◽  
pp. 1544-1546 ◽  
Author(s):  
P. Lasko ◽  
P. Cho ◽  
F. Poulin ◽  
N. Sonenberg

Translational control is a key genetic regulatory mechanism underlying the initial establishment of the major spatial axes of the Drosophila embryo. Many translational control mechanisms target eIF4E (eukaryotic initiation factor 4E), an initiation factor that recognizes the 5′-cap structure of the mRNA. Cap recognition by eIF4E, in complex with eIF4G, is essential for recruitment of the mRNA to the small ribosomal subunit. One established mechanism for repressing translation involves eIF4E-binding proteins, which competitively inhibit the eIF4E–eIF4G interaction. Our group has uncovered a novel mechanism for repression in which an eIF4E cognate protein called d4EHP, which cannot bind eIF4G, binds to the 5′-cap structure of cad mRNA thus rendering it translationally inactive. These two related, but distinct, mechanisms are discussed and contrasted in this review.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009775
Author(s):  
Mennatallah M. Y. Albarqi ◽  
Sean P. Ryder

RNA regulation is essential to successful reproduction. Messenger RNAs delivered from parent to progeny govern early embryonic development. RNA-binding proteins (RBPs) are the key effectors of this process, regulating the translation and stability of parental transcripts to control cell fate specification events prior to zygotic gene activation. The KH-domain RBP MEX-3 is conserved from nematode to human. It was first discovered in Caenorhabditis elegans, where it is essential for anterior cell fate and embryo viability. Here, we show that loss of the endogenous mex-3 3´UTR disrupts its germline expression pattern. An allelic series of 3´UTR deletion variants identify repressing regions of the UTR and demonstrate that repression is not precisely coupled to reproductive success. We also show that several RBPs regulate mex-3 mRNA through its 3´UTR to define its unique germline spatiotemporal expression pattern. Additionally, we find that both poly(A) tail length control and the translation initiation factor IFE-3 contribute to its expression pattern. Together, our results establish the importance of the mex-3 3´UTR to reproductive health and its expression in the germline. Our results suggest that additional mechanisms control MEX-3 function when 3´UTR regulation is compromised.


2020 ◽  
Vol 477 (10) ◽  
pp. 1939-1950 ◽  
Author(s):  
Zizheng Dong ◽  
Jianguo Liu ◽  
Jian-Ting Zhang

eIF3a is a putative subunit of the eukaryotic translation initiation factor 3 complex. Accumulating evidence suggests that eIF3a may have a translational regulatory function by suppressing translation of a subset of mRNAs while accelerating that of other mRNAs. Albeit the suppression of mRNA translation may derive from eIF3a binding to the 5′-UTRs of target mRNAs, how eIF3a may accelerate mRNA translation remains unknown. In this study, we show that eIF3a up-regulates translation of Chk1 but not Chk2 mRNA by interacting with HuR, which binds directly to the 3′-UTR of Chk1 mRNA. The interaction between eIF3a and HuR occurs at the 10-amino-acid repeat domain of eIF3a and the RNA recognition motif domain of HuR. This interaction may effectively circularize Chk1 mRNA to form an end-to-end complex that has recently been suggested to accelerate mRNA translation. Together with previous findings, we conclude that eIF3a may regulate mRNA translation by directly binding to the 5′-UTR to suppress or by interacting with RNA-binding proteins at 3′-UTRs to accelerate mRNA translation.


Sign in / Sign up

Export Citation Format

Share Document