scholarly journals Role of mucins in lung homeostasis: regulated expression and biosynthesis in health and disease

2018 ◽  
Vol 46 (3) ◽  
pp. 707-719 ◽  
Author(s):  
Breanna A. Symmes ◽  
Adrianne L. Stefanski ◽  
Chelsea M. Magin ◽  
Christopher M. Evans

In humans and mice, the first line of innate defense against inhaled pathogens and particles in the respiratory tract is airway mucus. The primary solid components of the mucus layer are the mucins MUC5AC and MUC5B, polymeric glycoproteins whose changes in abundance and structure can dramatically affect airway defense. Accordingly, MUC5AC/Muc5ac and MUC5B/Muc5b are tightly regulated at a transcriptional level by tissue-specific transcription factors in homeostasis and in response to injurious and inflammatory triggers. In addition to modulated levels of mucin gene transcription, translational and post-translational biosynthetic processes also exert significant influence upon mucin function. Mucins are massive macromolecules with numerous functional domains that contribute to their structural composition and biophysical properties. Single MUC5AC and MUC5B apoproteins have molecular masses of >400 kDa, and von Willebrand factor D-like as well as other cysteine-rich domain segments contribute to mucin polymerization and flexibility, thus increasing apoprotein length and complexity. Additional domains serve as sites for O-glycosylation, which increase further mucin mass several-fold. Glycosylation is a defining process for mucins that is specific with respect to additions of glycans to mucin apoprotein backbones, and glycan additions influence the physical properties of the mucins via structural modifications as well as charge interactions. Ultimately, through their tight regulation and complex assembly, airway mucins follow the biological rule of ‘form fits function’ in that their structural organization influences their role in lung homeostatic mechanisms.

2000 ◽  
Vol 84 (07) ◽  
pp. 104-111 ◽  
Author(s):  
Philippe Ulsemer ◽  
Marie-Jeanne Baas ◽  
Agnès Schwartz ◽  
Catherine Ravanat ◽  
Marie-Elisabeth Briquel ◽  
...  

SummaryThe mechanisms governing the biosynthesis and surface expression of platelet adhesive receptors on parent megakaryocytes are as yet poorly understood. In particular, the assembly and processing of the multisubunit glycoprotein (GP) Ib-IX-V complex, a receptor for von Willebrand factor (vWf) is not fully understood. In the present work, these questions were addressed by reproducing a natural mutation of GPIbα found in a variant case of Bernard-Soulier syndrome (Nancy I), due to the deletion of leucine 179 in the seventh leucine-rich repeat of the polypeptide. Wild type and mutated GPIbα were transfected into CHO cells expressing GPIbβ and GPIX. Flow cytometry showed surface expression of the three subunits of both GPIb-IX complexes, but GPIbαΔLeu was present at lower levels (20-40%) and was recognized only by a sub class of monoclonal antibodies which epitopes were not modified by the mutation. These properties reproduce the defect found in the patient’s platelets, demonstrating the causative nature of the mutation and validate the use of the CHO cells model. Biochemical studies were performed in an attempt to elucidate the mechanism of the conformational change of GPIbαΔLeu. They unexpectedly revealed a major glycosylation deficiency of the mutated GPIbα leading to a 40% decrease in molecular weight. The other two subunits of the complex were however normal and present at the plasma membrane. The deletion led to complete functional deficiency with lack of vWf binding of CHOαΔLeu transfected cells in the presence of botrocetin and defective adhesion to a vWf coated surface under static conditions. Finally, in contrast to normal CHOαβIX cells, which displayed rolling and deceleration when perfused over a vWf surface, CHOαΔLeuβIX cells were unable to roll over or attach to a vWf substratum. These results show that the integrity of the leucine-rich region of GPIbα is essential for normal processing and function of the GPIb-IX complex. In addition, these results obtained in a cellular system supported the suspected role of the macroglycopeptide region of GPIbα in maintaining a suitable conformation of this multisubunit receptor to perform its adhesive function.


2010 ◽  
Vol 30 (03) ◽  
pp. 150-155 ◽  
Author(s):  
J. W. Wang ◽  
J. Eikenboom

SummaryVon Willebrand factor (VWF) is a pivotal haemostatic protein mediating platelet adhesion to injured endothelium and carrying coagulation factor VIII (FVIII) in the circulation to protect it from premature clearance. Apart from the roles in haemostasis, VWF drives the formation of the endothelial cell specific Weibel-Palade bodies (WPBs), which serve as a regulated storage of VWF and other thrombotic and inflammatory factors. Defects in VWF could lead to the bleeding disorder von Willebrand disease (VWD).Extensive studies have shown that several mutations identified in VWD patients cause an intracellular retention of VWF. However, the effects of such mutations on the formation and function of its storage organelle are largely unknown. This review gives an overview on the role of VWF in WPB biogenesis and summarizes the limited data on the WPBs formed by VWD-causing mutant VWF.


1991 ◽  
Vol 65 (05) ◽  
pp. 608-617 ◽  
Author(s):  
Joseph A Chinn ◽  
Thomas A Horbett ◽  
Buddy D Ratner

SummaryThe role of fibrinogen in mediating platelet adhesion to polymers exposed to blood plasma was studied by comparison of the effect of plasma dilution on fibrinogen adsorption and platelet adhesion, and by the use of coagulation factor deficient plasmas. Polyetherurethane substrates were first preadsorbed with dilute plasma, then contacted with washed platelets suspended in a modified, apyrase containing Tyrode’s buffer. Platelet adhesion was studied under static conditions in Multiwell dishes, and also under shearing conditions using a parallel plate perfusion chamber. Fibrinogen adsorption and platelet adhesion were measured using 125I radiolabeled baboon fibrinogen and min radiolabeled baboon platelets, respectively. Surfaces were characterized by electron spectroscopy for chemical analysis (ESCA).When fibrinogen adsorption to Biomer was measured after 2 h contact with a series of dilute plasma solutions under static conditions, a peak in adsorption was observed from 0.26% plasma, i.e., adsorption was greater from 0.26% plasma than from either more or less dilute plasma. A peak in subsequent platelet adhesion to the plasma preadsorbed surfaces, measured after 2 h static incubation with washed platelets, was also observed but occurred on Biomer preadsorbed with 1.0% plasma.When fibrinogen adsorption was measured after 5 min contact under shearing conditions, the fibrinogen adsorption peak occurred on surfaces that had been exposed to 1.0% plasma. A peak in platelet adhesion to these preadsorbed surfaces, measured after 5 min contact with the platelet suspensions under shearing conditions, was observed on Biomer preadsorbed with 0.1% plasma. Shifts between the positions of the peaks in protein adsorption and platelet adhesion occurred on other polymers tested as well.Platelet adhesion was almost completely inhibited when baboon and human plasmas lacking fibrinogen (i. e., serum, heat defibrinogenated plasma, and congenitally afibrinogénémie plasma) were used. Platelet adhesion was restored to near normal when exogenous fibrinogen was added to fibrinogen deficient plasmas. Adhesion was also inhibited completely when a monoclonal antibody directed against the glycoprotein IIb/IIIa complex was added to the platelet suspension. Platelet adhesion to surfaces preadsorbed to von Willebrand factor deficient plasma was the same as to surfaces preadsorbed with normal plasma.While it appears that surface bound fibrinogen does mediate the initial attachment of platelets to Biomer, the observation that the fibrinogen adsorption and platelet adhesion maxima do not coincide exactly also suggests that the degree of subsequent platelet adhesion is dictated not only by the amount of surface bound fibrinogen but also by its conformation.


2021 ◽  
Vol 14 (4) ◽  
pp. 101033
Author(s):  
Chia Yin Goh ◽  
Sean Patmore ◽  
Albert Smolenski ◽  
Jane Howard ◽  
Shane Evans ◽  
...  

1983 ◽  
Vol 244 (1) ◽  
pp. H109-H114 ◽  
Author(s):  
G. A. Adams ◽  
I. A. Feuerstein

We examine the estimation of local concentrations of materials that are released from the dense and alpha-granules of platelets during accumulation of platelets upon collagen-coated glass. Platelet/red blood cell suspensions were perfused through a 1.3-mm-ID tube. Empirical data were used in a calculation procedure, based on diffusion and convection, designed to yield an upper bound on the interfacial fluid concentration (IFC) for each substance considered. The necessary empirical data are the rate of platelet accumulation and the maximum amount of material in the platelet capable of secretion. It was found that the IFC is dependent on the shear rate at the surface (G) and is proportional to G0.27. This means that an eightfold increase in flow rate would increase the IFCs approximately twofold. Serotonin, pyrophosphate, adenosine 5'-monophosphate (AMP), and adenosine 5'-triphosphate (ATP) were found not to be present in sufficient quantities to produce IFCs that could influence platelet aggregation if used alone at the IFC. A second set of materials, fibrinogen, fibronectin von Willebrand factor, and calcium, had IFCs less than their concentrations normally found in plasma. A third category, containing adenosine 5'-diphosphate (ADP) alone, had an IFC close to those known to affect platelet aggregation. The role of metabolites of arachidonic acid, which may promote or inhibit platelet aggregation, awaits further description.


1987 ◽  
Vol 516 (1 Blood in Cont) ◽  
pp. 52-65 ◽  
Author(s):  
KJELL S. SAKARIASSEN ◽  
EDITH FRESSINAUD ◽  
JEAN-PIERRE GIRMA ◽  
DOMINIQUE MEYER ◽  
HANS R. BAUMGARTNER

Blood ◽  
2010 ◽  
Vol 115 (23) ◽  
pp. 4862-4869 ◽  
Author(s):  
Mia Golder ◽  
Cynthia M. Pruss ◽  
Carol Hegadorn ◽  
Jeffrey Mewburn ◽  
Kimberly Laverty ◽  
...  

Abstract Type 2B von Willebrand disease (2B VWD) results from von Willebrand factor (VWF) A1 mutations that enhance VWF-GPIbα binding. These “gain of function” mutations lead to an increased affinity of the mutant VWF for platelets and the binding of mutant high-molecular-weight VWF multimers to platelets in vivo, resulting in an increase in clearance of both platelets and VWF. Three common 2B VWD mutations (R1306W, V1316M, and R1341Q) were independently introduced into the mouse Vwf cDNA sequence and the expression vectors delivered to 8- to 10-week-old C57Bl6 VWF−/− mice, using hydrodynamic injection. The resultant phenotype was examined, and a ferric chloride–induced injury model was used to examine the thrombogenic effect of the 2B VWD variants in mice. Reconstitution of only the plasma component of VWF resulted in the generation of the 2B VWD phenotype in mice. Variable thrombocytopenia was observed in mice expressing 2B VWF, mimicking the severity seen in 2B VWD patients: mice expressing the V1316M mutation showed the most severe thrombocytopenia. Ferric chloride–induced injury to cremaster arterioles showed a marked reduction in thrombus development and platelet adhesion in the presence of circulating 2B VWF. These defects were only partially rescued by normal platelet transfusions, thus emphasizing the key role of the abnormal plasma VWF environment in 2B VWD.


Blood ◽  
2010 ◽  
Vol 116 (16) ◽  
pp. 3064-3072 ◽  
Author(s):  
Rens de Groot ◽  
David A. Lane ◽  
James T. B. Crawley

Abstract ADAMTS13 modulates von Willebrand factor (VWF) platelet-tethering function by proteolysis of the Tyr1605-Met1606 bond in the VWF A2 domain. To examine the role of the metalloprotease domain of ADAMTS13 in scissile bond specificity, we identified 3 variable regions (VR1, -2, and -3) in the ADAMTS family metalloprotease domain that flank the active site, which might be important for specificity. Eight composite sequence swaps (to residues in ADAMTS1 or ADAMTS2) and 18 single-point mutants were generated in these VRs and expressed. Swapping VR1 (E184-R193) of ADAMTS13 with that of ADAMTS1 or ADAMTS2 abolished/severely impaired ADAMTS13 function. Kinetic analysis of VR1 point mutants using VWF115 as a short substrate revealed reduced proteolytic function (kcat/Km reduced by 2- to 10-fold) as a result of D187A, R190A, and R193A substitutions. Analysis of VR2 (F216-V220) revealed a minor importance of this region. Mutants of VR3 (G236-A261) proteolysed wild-type VWF115 normally. However, using either short or full-length VWF substrates containing the P1′ M1606A mutation, we identified residues within VR3 (D252-P256) that influence P1′ amino acid specificity, we hypothesize, by shaping the S1′ pocket. It is concluded that 2 subsites, D187-R193 and D252-P256, in the metalloprotease domain play an important role in cleavage efficiency and site specificity.


Sign in / Sign up

Export Citation Format

Share Document