scholarly journals Artificial intelligence for microscopy: what you should know

2019 ◽  
Vol 47 (4) ◽  
pp. 1029-1040 ◽  
Author(s):  
Lucas von Chamier ◽  
Romain F. Laine ◽  
Ricardo Henriques

Abstract Artificial Intelligence based on Deep Learning (DL) is opening new horizons in biomedical research and promises to revolutionize the microscopy field. It is now transitioning from the hands of experts in computer sciences to biomedical researchers. Here, we introduce recent developments in DL applied to microscopy, in a manner accessible to non-experts. We give an overview of its concepts, capabilities and limitations, presenting applications in image segmentation, classification and restoration. We discuss how DL shows an outstanding potential to push the limits of microscopy, enhancing resolution, signal and information content in acquired data. Its pitfalls are discussed, along with the future directions expected in this field.

Author(s):  
Lucas von Chamier ◽  
Romain F. Laine ◽  
Ricardo Henriques

Artificial Intelligence based on Deep Learning is opening new horizons in Biomedical research and promises to revolutionize the Microscopy field. Slowly, it now transitions from the hands of experts in Computer Sciences to researchers in Cell Biology. Here, we introduce recent developments in Deep Learning applied to Microscopy, in a manner accessible to non-experts. We overview its concepts, capabilities and limitations, presenting applications in image segmentation, classification and restoration. We discuss how Deep Learning shows an outstanding potential to push the limits of Microscopy, enhancing resolution, signal and information content in acquired data. Its pitfalls are carefully discussed, as well as the future directions expected in this field.


Author(s):  
Lucas von Chamier ◽  
Romain F. Laine ◽  
Ricardo Henriques

Artificial Intelligence based on Deep Learning is opening new horizons in Biomedical research and promises to revolutionize the Microscopy field. Slowly, it now transitions from the hands of experts in Computer Sciences to researchers in Cell Biology. Here, we introduce recent developments in Deep Learning applied to Microscopy, in a manner accessible to non-experts. We overview its concepts, capabilities and limitations, presenting applications in image segmentation, classification and restoration. We discuss how Deep Learning shows an outstanding potential to push the limits of Microscopy, enhancing resolution, signal and information content in acquired data. Its pitfalls are carefully discussed, as well as the future directions expected in this field.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


2021 ◽  
Author(s):  
Margarita Konaev ◽  
Tina Huang ◽  
Husanjot Chahal

As the U.S. military integrates artificial intelligence into its systems and missions, there are outstanding questions about the role of trust in human-machine teams. This report examines the drivers and effects of such trust, assesses the risks from too much or too little trust in intelligent technologies, reviews efforts to build trustworthy AI systems, and offers future directions for research on trust relevant to the U.S. military.


2021 ◽  
Vol 6 (5) ◽  
pp. 10-15
Author(s):  
Ela Bhattacharya ◽  
D. Bhattacharya

COVID-19 has emerged as the latest worrisome pandemic, which is reported to have its outbreak in Wuhan, China. The infection spreads by means of human contact, as a result, it has caused massive infections across 200 countries around the world. Artificial intelligence has likewise contributed to managing the COVID-19 pandemic in various aspects within a short span of time. Deep Neural Networks that are explored in this paper have contributed to the detection of COVID-19 from imaging sources. The datasets, pre-processing, segmentation, feature extraction, classification and test results which can be useful for discovering future directions in the domain of automatic diagnosis of the disease, utilizing artificial intelligence-based frameworks, have been investigated in this paper.


2022 ◽  
pp. 222-230
Author(s):  
Himani Saini ◽  
Preeti Tarkar

Artificial intelligence is a branch of science and technology that has been used effectively over the decades in various fields, and now it has become an indispensable part of organizational practices as it is one of the leading technologies in the current era, and now there is an emerging trend of applying AI technologies within the businesses. The central necessity of human resource management is also majorly based on technological approaches as it became a potential need for any human resources department to perform its role in the development of the whole organization. Technologies based on AI are and will be the smart system of the future and it's also changing the processes of human resource management by making it more dependent on advanced technologies. Through the chapter, the researcher will get to know the artificial technologies being practiced in HR practices and explore the probable and potential of technicality of AI in HRM and also the challenges associated with AI in HRM and its future possibilities.


Oncology ◽  
2020 ◽  
pp. 1-11
Author(s):  
Tucker J. Netherton ◽  
Carlos E. Cardenas ◽  
Dong Joo Rhee ◽  
Laurence E. Court ◽  
Beth M. Beadle

<b><i>Background:</i></b> The future of artificial intelligence (AI) heralds unprecedented change for the field of radiation oncology. Commercial vendors and academic institutions have created AI tools for radiation oncology, but such tools have not yet been widely adopted into clinical practice. In addition, numerous discussions have prompted careful thoughts about AI’s impact upon the future landscape of radiation oncology: How can we preserve innovation, creativity, and patient safety? When will AI-based tools be widely adopted into the clinic? Will the need for clinical staff be reduced? How will these devices and tools be developed and regulated? <b><i>Summary:</i></b> In this work, we examine how deep learning, a rapidly emerging subset of AI, fits into the broader historical context of advancements made in radiation oncology and medical physics. In addition, we examine a representative set of deep learning-based tools that are being made available for use in external beam radiotherapy treatment planning and how these deep learning-based tools and other AI-based tools will impact members of the radiation treatment planning team. <b><i>Key Messages:</i></b> Compared to past transformative innovations explored in this article, such as the Monte Carlo method or intensity-modulated radiotherapy, the development and adoption of deep learning-based tools is occurring at faster rates and promises to transform practices of the radiation treatment planning team. However, accessibility to these tools will be determined by each clinic’s access to the internet, web-based solutions, or high-performance computing hardware. As seen by the trends exhibited by many technologies, high dependence on new technology can result in harm should the product fail in an unexpected manner, be misused by the operator, or if the mitigation to an expected failure is not adequate. Thus, the need for developers and researchers to rigorously validate deep learning-based tools, for users to understand how to operate tools appropriately, and for professional bodies to develop guidelines for their use and maintenance is essential. Given that members of the radiation treatment planning team perform many tasks that are automatable, the use of deep learning-based tools, in combination with other automated treatment planning tools, may refocus tasks performed by the treatment planning team and may potentially reduce resource-related burdens for clinics with limited resources.


Author(s):  
Sarah Thorne

Surveying narrative applications of artificial intelligence in film, games and interactive fiction, this article imagines the future of artificial intelligence (AI) authorship and explores trends that seek to replace human authors with algorithmically generated narrative. While experimental works that draw on text generation and natural language processing have a rich history, this article focuses on commercial applications of AI narrative and looks to future applications of this technology. Video games have incorporated AI and procedural generation for many years, but more recently, new applications of this technology have emerged in other media. Director Oscar Sharp and artist Ross Goodwin, for example, generated significant media buzz about two short films that they produced which were written by their AI screenwriter. It’s No Game (2017), in particular, offers an apt commentary on the possibility of replacing striking screenwriters with AI authors. Increasingly, AI agents and virtual assistants like Siri, Cortana, Alexa and Google Assistant are incorporated into our daily lives. As concerns about their eavesdropping circulate in news media, it is clear that these companions are learning a lot about us, which raises concerns about how our data might be employed in the future. This article explores current applications of AI for storytelling and future directions of this technology to offer insight into issues that have and will continue to arise as AI storytelling advances.


Sign in / Sign up

Export Citation Format

Share Document