scholarly journals Does it take two to tango? RING domain self-association and activity in TRIM E3 ubiquitin ligases

2020 ◽  
Vol 48 (6) ◽  
pp. 2615-2624
Author(s):  
Filippo Fiorentini ◽  
Diego Esposito ◽  
Katrin Rittinger

TRIM proteins form a protein family that is characterized by a conserved tripartite motif domain comprising a RING domain, one or two B-box domains and a coiled-coil region. Members of this large protein family are important regulators of numerous cellular functions including innate immune responses, transcriptional regulation and apoptosis. Key to their cellular role is their E3 ligase activity which is conferred by the RING domain. Self-association is an important characteristic of TRIM protein activity and is mediated by homodimerization via the coiled-coil region, and in some cases higher order association via additional domains of the tripartite motif. In many of the TRIM family proteins studied thus far, RING dimerization is an important prerequisite for E3 ligase enzymatic activity though the propensity of RING domains to dimerize differs significantly between different TRIMs and can be influenced by other regions of the protein.

Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 254 ◽  
Author(s):  
Elisa Lazzari ◽  
Medhat El-Halawany ◽  
Matteo De March ◽  
Floriana Valentino ◽  
Francesco Cantatore ◽  
...  

Members of the tripartite motif family of E3 ubiquitin ligases are characterized by the presence of a conserved N-terminal module composed of a RING domain followed by one or two B-box domains, a coiled-coil and a variable C-terminal region. The RING and B-box are both Zn-binding domains but, while the RING is found in a large number of proteins, the B-box is exclusive to the tripartite motif (TRIM) family members in metazoans. Whereas the RING has been extensively characterized and shown to possess intrinsic E3 ligase catalytic activity, much less is known about the role of the B-box domains. In this study, we adopted an in vitro approach using recombinant point- and deletion-mutants to characterize the contribution of the TRIM32 Zn-binding domains to the activity of this E3 ligase that is altered in a genetic form of muscular dystrophy. We found that the RING domain is crucial for E3 ligase activity and E2 specificity, whereas a complete B-box domain is involved in chain assembly rate modulation. Further, in vitro, the RING domain is necessary to modulate TRIM32 oligomerization, whereas, in cells, both the RING and B-box cooperate to specify TRIM32 subcellular localization, which if altered may impact the pathogenesis of diseases.


2019 ◽  
Vol 2 (3) ◽  
pp. e201900295 ◽  
Author(s):  
Rebecca V Stevens ◽  
Diego Esposito ◽  
Katrin Rittinger

TRIM E3 ubiquitin ligases regulate multiple cellular processes, and their dysfunction is linked to disease. They are characterised by a conserved N-terminal tripartite motif comprising a RING, B-box domains, and a coiled-coil region, with C-terminal domains often mediating substrate recruitment. TRIM proteins are grouped into 11 classes based on C-terminal domain identity. Class VI TRIMs, TRIM24, TRIM33, and TRIM28, have been described as transcriptional regulators, a function linked to their C-terminal plant homeodomain and bromodomain, and independent of their ubiquitination activity. It is unclear whether E3 ligase activity is regulated in family members where the C-terminal domains function independently. Here, we provide a detailed biochemical characterisation of the RING domains of class VI TRIMs and describe the solution structure of the TRIM28 RING. Our study reveals a lack of activity of the isolated RING domains, which may be linked to the absence of self-association. We propose that class VI TRIMs exist in an inactive state and require additional regulatory events to stimulate E3 ligase activity, ensuring that associated chromatin-remodelling factors are not injudiciously degraded.


2018 ◽  
Vol 293 (47) ◽  
pp. 18378-18386 ◽  
Author(s):  
Jeremy R. Keown ◽  
Moyra M. Black ◽  
Aaron Ferron ◽  
Melvyn Yap ◽  
Michael J. Barnett ◽  
...  

The retroviral restriction factor tripartite motif–containing 5α (Trim5α) acts during the early postentry stages of the retroviral life cycle to block infection by a broad range of retroviruses, disrupting reverse transcription and integration. The mechanism of this restriction is poorly understood, but it has recently been suggested to involve recruitment of components of the autophagy machinery, including members of the mammalian autophagy-related 8 (ATG8) family involved in targeting proteins to the autophagosome. To better understand the molecular details of this interaction, here we utilized analytical ultracentrifugation to characterize the binding of six ATG8 isoforms and determined the crystal structure of the Trim5α Bbox coiled-coil region in complex with one member of the mammalian ATG8 proteins, autophagy-related protein LC3 B (LC3B). We found that Trim5α binds all mammalian ATG8s and that, unlike the typical LC3-interacting region (LIR) that binds to mammalian ATG8s through a β-strand motif comprising approximately six residues, LC3B binds to Trim5α via the α-helical coiled-coil region. The orientation of the structure demonstrated that LC3B could be accommodated within a Trim5α assembly that can bind the retroviral capsid. However, mutation of the binding interface does not affect retroviral restriction. Comparison of the typical linear β-strand LIR with our atypical helical LIR reveals a conservation of the presentation of residues that are required for the interaction with LC3B. This observation expands the range of LC3B-binding proteins to include helical binding motifs and demonstrates a link between Trim5α and components of the autophagosome.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Indranil Paul ◽  
Mrinal K. Ghosh

The carboxy-terminus of Hsc70 interacting protein (CHIP) is a cochaperone E3 ligase containing three tandem repeats of tetratricopeptide (TPR) motifs and a C-terminal U-box domain separated by a charged coiled-coil region. CHIP is known to function as a central quality control E3 ligase and regulates several proteins involved in a myriad of physiological and pathological processes. Recent studies have highlighted varied regulatory mechanisms operating on the activity of CHIP which is crucial for cellular homeostasis. In this review article, we give a concise account of our current knowledge on the biochemistry and regulation of CHIP.


2011 ◽  
Vol 434 (2) ◽  
pp. 309-319 ◽  
Author(s):  
Luisa M. Napolitano ◽  
Ellis G. Jaffray ◽  
Ronald T. Hay ◽  
Germana Meroni

The TRIM (tripartite motif) family of proteins is characterized by the presence of the tripartite motif module, composed of a RING domain, one or two B-box domains and a coiled-coil region. TRIM proteins are involved in many cellular processes and represent the largest subfamily of RING-containing putative ubiquitin E3 ligases. Whereas their role as E3 ubiquitin ligases has been presumed, and in several cases established, little is known about their specific interactions with the ubiquitin-conjugating E2 enzymes or UBE2s. In the present paper, we report a thorough screening of interactions between the TRIM and UBE2 families. We found a general preference of the TRIM proteins for the D and E classes of UBE2 enzymes, but we also revealed very specific interactions between TRIM9 and UBE2G2, and TRIM32 and UBE2V1/2. Furthermore, we demonstrated that the TRIM E3 activity is only manifest with the UBE2 with which they interact. For most specific interactions, we could also observe subcellular co-localization of the TRIM involved and its cognate UBE2 enzyme, suggesting that the specific selection of TRIM–UBE2 pairs has physiological relevance. Our findings represent the basis for future studies on the specific reactions catalysed by the TRIM E3 ligases to determine the fate of their targets.


2018 ◽  
Author(s):  
Guido A. Stoll ◽  
Shun-ichiro Oda ◽  
Zheng-Shan Chong ◽  
Minmin Yu ◽  
Stephen H. McLaughlin ◽  
...  

AbstractTranscription of transposable elements is tightly regulated to prevent damage to the genome. The family of KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit KAP1, which controls the assembly of an epigenetic silencing complex including histone H3K9 methyltransferase SETDB1. The chromatin remodeling activities of this complex repress transcription of the targeted transposable element and any adjacent genes. Here, we use biophysical and structural approaches to show that the tripartite motif (TRIM) of KAP1 forms antiparallel dimers, which further assemble into tetramers and higher-order oligomers in a concentration-dependent manner. Structure-based mutations in the B-box 1 domain prevented higher-order oligomerization without a significant loss of retrotransposon silencing activity in a cell-based assay, indicating that, in contrast to other TRIM family members, self-assembly is not essential for the function of KAP1. The crystal structure of the KAP1 RBCC dimer identifies the KRAB domain binding site, in the coiled-coil domain near the dyad. Mutations at this site abolished KRAB binding and transcriptional silencing activity of KAP1. This work identifies the interaction interfaces in the KAP1 RBCC motif responsible for self-association and KRAB binding and establishes their role in retrotransposon silencing.


2001 ◽  
Vol 355 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Yanlin WANG ◽  
Wendy DEVEREUX ◽  
Tracy Murray STEWART ◽  
Robert A. CASERO

Polyamines and polyamine analogues have been demonstrated to modulate the transcription of various genes. Spermidine/spermine N1-acetyltransferase (SSAT) is transcriptionally regulated through the interaction of at least two trans-acting transcription factors, NF-E2-related factor 2 (Nrf-2) and PMF-1 (polyamine modulated factor-1). Nrf-2has previously been shown to regulate transcription of other genes through interactions between its C-terminal leucine zipper and the leucine-zipper region of other members of the small Maf protein family (the term ‘Maf’ is derived from musculoaponeurotic-fibrosarcoma virus). Here it is demonstrated that the interaction between Nrf-2 and PMF-1 is mediated through the binding of the leucine-zipper region of Nrf-2 and a C-terminal coiled-coil region of PMF-1 that does not contain a leucine zipper. Mutations that interrupt either the leucine zipper of Nrf-2 or the coiled-coil region of PMF-1 are demonstrated to alter the ability of these factors to interact, thus their ability to regulate the transcription of the SSAT gene is lost.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 98 ◽  
Author(s):  
Paola Infante ◽  
Ludovica Lospinoso Severini ◽  
Flavia Bernardi ◽  
Francesca Bufalieri ◽  
Lucia Di Marcotullio

Hedgehog signalling (Hh) is a developmental conserved pathway strongly involved in cancers when deregulated. This important pathway is orchestrated by numerous regulators, transduces through distinct routes and is finely tuned at multiple levels. In this regard, ubiquitylation processes stand as essential for controlling Hh pathway output. Although this post-translational modification governs proteins turnover, it is also implicated in non-proteolytic events, thereby regulating the most important cellular functions. The HECT E3 ligase Itch, well known to control immune response, is emerging to have a pivotal role in tumorigenesis. By illustrating Itch specificities on Hh signalling key components, here we review the role of this HECT E3 ubiquitin ligase in suppressing Hh-dependent tumours and explore its potential as promising target for innovative therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document