Chemogenetic approaches to dissect the role of H2O2 in redox-dependent pathways using genetically encoded biosensors

Author(s):  
Asal Ghaffari Zaki ◽  
Yusuf C. Erdoğan ◽  
Tuba Akgul Caglar ◽  
Emrah Eroglu

Chemogenetic tools are recombinant enzymes that can be targeted to specific organelles and tissues. The provision or removal of the enzyme substrate permits control of its biochemical activities. Yeast-derived enzyme D-amino acid oxidase (DAAO) represents the first of its kind for a substrate-based chemogenetic approach to modulate H2O2 concentrations within cells. Combining these powerful enzymes with multiparametric imaging methods exploiting genetically encoded biosensors has opened new lines of investigations in life sciences. In recent years, the chemogenetic DAAO approach has proven beneficial to establish a new role for (patho)physiological oxidative stress on redox-dependent signaling and metabolic pathways in cultured cells and animal model systems. This mini-review covers established or emerging methods and assesses newer approaches exploiting chemogenetic tools combined with genetically encoded biosensors.

1993 ◽  
Vol 268 (36) ◽  
pp. 26941-26949
Author(s):  
A D'Aniello ◽  
G D'Onofrio ◽  
M Pischetola ◽  
G D'Aniello ◽  
A Vetere ◽  
...  

2010 ◽  
Vol 107 (26) ◽  
pp. E107-E107 ◽  
Author(s):  
S. Millecamps ◽  
S. Da Barroca ◽  
C. Cazeneuve ◽  
F. Salachas ◽  
P.-F. Pradat ◽  
...  

Toxicon ◽  
2018 ◽  
Vol 145 ◽  
pp. 48-55 ◽  
Author(s):  
Mauro Valentino Paloschi ◽  
Charles Nunes Boeno ◽  
Jéssica Amaral Lopes ◽  
André Eduardo dos Santos da Rosa ◽  
Weverson Luciano Pires ◽  
...  

2013 ◽  
Vol 41 (6) ◽  
pp. 1551-1556 ◽  
Author(s):  
Silvia Sacchi

Over the years, accumulating evidence has indicated that D-serine represents the main endogenous ligand of NMDA (N-methyl-D-aspartate) receptors. In the brain, the concentration of D-serine stored in cells is defined by the activity of two enzymes: serine racemase (responsible for both the synthesis and degradation) and D-amino acid oxidase (which catalyses D-serine degradation). The present review is focused on human D-amino acid oxidase, discussing the mechanisms involved in modulating enzyme activity and stability, with the aim to substantiate the pivotal role of D-amino acid oxidase in brain D-serine metabolism.


In haemolysates of non-nucleated erythrocytes there is an inverse proportion between catalase activity and rate of choleglobin formation on addition of ascorbic acid. In the intact erythrocytes catalase protects haemoglobin against oxidation and further destruction by the hydrogen peroxide generated by the D-amino-acid oxidase system or by physiological concentrations of ascorbic acid and glutathione. Acid destromatization of haemolyzed horse erythrocytes causes a small decrease in the catalase activity and an increased rate of inactivation of the remaining catalase by ascorbic acid. The liberation of copper from haemocuprein is quantitatively insufficient to explain the decreased stability of the catalase. Exposing duck oxyhaemoglobin, but not reduced haemoglobin, to a pH of 5⋅5 to 5⋅8, causes an alteration which is apparent from the increase of the rate of choleglobin formation. The mechanism of this alteration is discussed. It partly explains the 'stroma effect', at least in duck erythrocytes. In addition, in the latter, there is a true stroma effect. Choleglobin formation in the presence of ascorbic acid is accelerated by a variety of substances. Some of these perturb haemoglobin, while others increase the formation of hydrogen peroxide from ascorbic acid. The implications of our findings on the mechanism of choleglobin formation and on the role of catalase in the erythrocyte are discussed.


2007 ◽  
Vol 9 (7) ◽  
pp. 807-816 ◽  
Author(s):  
Patrick J. Halvey ◽  
Jason M. Hansen ◽  
Jennifer M. Johnson ◽  
Young-Mi Go ◽  
Afshin Samali ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Sonia Sifuentes-Franco ◽  
Fermín Paul Pacheco-Moisés ◽  
Adolfo Daniel Rodríguez-Carrizalez ◽  
Alejandra Guillermina Miranda-Díaz

Diabetic polyneuropathy (DPN) is the most frequent and prevalent chronic complication of diabetes mellitus (DM). The state of persistent hyperglycemia leads to an increase in the production of cytosolic and mitochondrial reactive oxygen species (ROS) and favors deregulation of the antioxidant defenses that are capable of activating diverse metabolic pathways which trigger the presence of nitro-oxidative stress (NOS) and endoplasmic reticulum stress. Hyperglycemia provokes the appearance of micro- and macrovascular complications and favors oxidative damage to the macromolecules (lipids, carbohydrates, and proteins) with an increase in products that damage the DNA. Hyperglycemia produces mitochondrial dysfunction with deregulation between mitochondrial fission/fusion and regulatory factors. Mitochondrial fission appears early in diabetic neuropathy with the ability to facilitate mitochondrial fragmentation. Autophagy is a catabolic process induced by oxidative stress that involves the formation of vesicles by the lysosomes. Autophagy protects cells from diverse stress factors and routine deterioration. Clarification of the mechanisms involved in the appearance of complications in DM will facilitate the selection of specific therapeutic options based on the mechanisms involved in the metabolic pathways affected. Nowadays, the antioxidant agents consumed exogenously form an adjuvant therapeutic alternative in chronic degenerative metabolic diseases, such as DM.


1965 ◽  
Vol 95 (1) ◽  
pp. 262-269 ◽  
Author(s):  
EA ZELLER ◽  
G RAMACHANDER ◽  
GA FLEISHER ◽  
T ISHIMARU ◽  
V ZELLER

Sign in / Sign up

Export Citation Format

Share Document