Non-Invasive Measurement of Lung Water Distribution and Capillary Permeability in Man, Using 123-Iodine Labelled Markers

1981 ◽  
Vol 61 (3) ◽  
pp. 2P-2P ◽  
Author(s):  
M. Kanazawa ◽  
S. Van Schaick ◽  
A. Hussein ◽  
M. Scott ◽  
G. De J. Lee
2001 ◽  
Vol 120 (5) ◽  
pp. A266-A266
Author(s):  
R BUTLER ◽  
B ZACHARAKIS ◽  
D MOORE ◽  
K CRAWFORD ◽  
G DAVIDSON ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2162
Author(s):  
Mohammad Mamouei ◽  
Subhasri Chatterjee ◽  
Meysam Razban ◽  
Meha Qassem ◽  
Panayiotis A. Kyriacou

Dermal water content is an important biophysical parameter in preserving skin integrity and preventing skin damage. Traditional electrical-based and open-chamber evaporimeters have several well-known limitations. In particular, such devices are costly, sizeable, and only provide arbitrary outputs. They also do not permit continuous and non-invasive monitoring of dermal water content, which can be beneficial for various consumer, clinical, and cosmetic purposes. We report here on the design and development of a digital multi-wavelength optical sensor that performs continuous and non-invasive measurement of dermal water content. In silico investigation on porcine skin was carried out using the Monte Carlo modeling strategy to evaluate the feasibility and characterize the sensor. Subsequently, an in vitro experiment was carried out to evaluate the performance of the sensor and benchmark its accuracy against a high-end, broad band spectrophotometer. Reference measurements were made against gravimetric analysis. The results demonstrate that the developed sensor can deliver accurate, continuous, and non-invasive measurement of skin hydration through measurement of dermal water content. Remarkably, the novel design of the sensor exceeded the performance of the high-end spectrophotometer due to the important denoising effects of temporal averaging. The authors believe, in addition to wellbeing and skin health monitoring, the designed sensor can particularly facilitate disease management in patients presenting diabetes mellitus, hypothyroidism, malnutrition, and atopic dermatitis.


Author(s):  
Konstantinos Markakis ◽  
Nikolaos Pagonas ◽  
Eleni Georgianou ◽  
Panagiota Zgoura ◽  
Benjamin J. Rohn ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1686
Author(s):  
Mostafa Gouda ◽  
Long Sheng ◽  
Rana Muhammad Aadil ◽  
Yuanyuan Liu ◽  
Meihu Ma ◽  
...  

Using natural multi-function phytochemicals could be one of the best solutions for clean-label production. In this study, dairy ice creams were prepared containing 14% egg yolk and 0.1% of thymol (THY), trans-cinnamaldehyde (TC), menthol (MEN), or vanillin (VAN). Then, the physical, chemical, and structural characteristics were evaluated. Magnetic resonance imaging (MRI) analysis (a rapid, chemical-free, and non-invasive tool) was carried out to evaluate the water distribution. A multivariate analysis was conducted among all studied variables. According to the results, the overrun of the MEN ice cream was significantly increased as compared to the control sample. The density was also reduced in the MEN sample. Meanwhile, the spreadability (%) of VAN was significantly increased after 6 min as compared to the control treatment. MRI analysis revealed that water distribution was significantly changed in the THY group. The firmness and viscosity of THY samples were significantly increased (p < 0.05). Multivariate analysis indicated that viscosity index and consistency were the top parameters affected by THY. The authors concluded that THY and VAN are promising stabilizers for ice-cream clean production.


2021 ◽  
Vol 21 (9) ◽  
pp. 10703-10710
Author(s):  
Weijuan Chen ◽  
Yi Zhang ◽  
Huicheng Yang ◽  
Yishen Qiu ◽  
Hui Li ◽  
...  

1987 ◽  
Vol 138 (1) ◽  
pp. 231-231
Author(s):  
K.K. Sethia ◽  
J.C. Smith

Sign in / Sign up

Export Citation Format

Share Document