Glycogen-Depletion Patterns with Isometric and Isokinetic Exercise in Patients after Leg Injury

1981 ◽  
Vol 61 (1) ◽  
pp. 35-42 ◽  
Author(s):  
B. Hultén ◽  
P. Renström ◽  
G. Grimby

1. The glycogen-depletion patterns were studied as a measure of muscle-fibre recruitment in patients after leg injuries (fractures, ligament injuries). Intermittent isometric and dynamic isokinetic knee extension were performed with 30 and 50% of the maximal isometric torque of the injured leg. In a third group isokinetic and dynamic exercise with weights were compared by using maximal effort procedures. 2. The 30% maximal voluntary contraction programme, which corresponded to 16% of maximal voluntary contraction of the non-injured leg, resulted in glycogen depletion of type I fibres, which was significant only in the isometric exercise. In the 50% maximal voluntary contraction programme (41% of maximal voluntary contraction of the non-injured leg) depletion of type II fibres dominated and was significant with isometric exercises. In the maximal effort programmes there was a significant depletion of type II fibres. 3. Subjects with a relatively large reduction in strength or a small number of type I fibres demonstrated more depletion of these fibres than other subjects. 4. In patients with moderately reduced muscle strength and muscle fibre atrophy static or dynamic exercises using at least 50% of the actual maximal voluntary contraction can thus be used to recruit and train type II fibres.

2003 ◽  
Vol 95 (3) ◽  
pp. 1045-1054 ◽  
Author(s):  
C. J. Houtman ◽  
D. F. Stegeman ◽  
J. P. Van Dijk ◽  
M. J. Zwarts

To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.


1992 ◽  
Vol 73 (3) ◽  
pp. 812-816 ◽  
Author(s):  
A. Aniansson ◽  
G. Grimby ◽  
M. Hedberg

Muscle strength and muscle morphology have been studied three times during a period of 11 yr in nine elderly men. On the last occasion the average age was 80.4 (range 79–82) yr. Body cell mass decreased by 6% and muscle strength for knee extension, measured by means of isometric and concentric isokinetic (30–60 degrees/s) recordings, declined by 25–35% over the 11-yr period. Between 76 and 80 yr of age only the isokinetic strength for 30 degrees/s decreased significantly. Muscle fiber composition in the vastus lateralis did not change between 69 and 76 yr of age, but there was a significant reduction in the proportion of type IIb fibers from 76 to 80 yr. The decrease in type II fiber areas was not significant between 69 and 76 yr of age (as in a larger sample from the same population), but a significant increase in both type I and type II fiber areas was recorded from 76 to 80 yr of age and biceps brachii showed similar tendencies. In the same period, the enzymatic activities of myokinase and lactate dehydrogenase subsided in the vastus lateralis, but there was no change for triose phosphate dehydrogenase, 3-hydroxy-CoA-dehydrogenase, and citrate synthase. The muscle fiber hypertrophy in this group of elderly men with maintained physical activity between 76 and 80 yr of age is interpreted as a compensatory adaptation for the loss of motor units. In addition, the adaptation with respect to oxidative capacities seems to be maintained at this age.


2007 ◽  
Vol 103 (4) ◽  
pp. 1402-1411 ◽  
Author(s):  
Savio W. Wong ◽  
Derek S. Kimmerly ◽  
Nicholas Massé ◽  
Ravi S. Menon ◽  
David F. Cechetto ◽  
...  

In general, cardiac regulation is dominated by the sympathetic and parasympathetic nervous systems in men and women, respectively. Our recent study had revealed sex differences in the forebrain network associated with sympathoexcitatory response to baroreceptor unloading. The present study further examined the sex differences in forebrain modulation of cardiovagal response at the onset of isometric exercise. Forebrain activity in healthy men ( n = 8) and women ( n = 9) was measured using functional magnetic resonance imaging during 5 and 35% maximal voluntary contraction handgrip exercise. Heart rate (HR), mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA) were collected in a separate recording session. During the exercise, HR and MAP increased progressively, while MSNA was suppressed ( P < 0.05). Relative to men, women demonstrated smaller HR (8 ± 2 vs. 18 ± 3 beats/min) and MAP (3 ± 2 vs. 11 ± 2 mmHg) responses to the 35% maximal voluntary contraction trials ( P < 0.05). Although a similar forebrain network was activated in both groups, the smaller cardiovascular response in women was reflected in a weaker insular cortex activation. Nevertheless, men did not show a stronger deactivation at the ventral medial prefrontal cortex, which has been associated with modulating cardiovagal activity. In contrast, the smaller cardiovascular response in women related to their stronger suppression of the dorsal anterior cingulate cortex activity, which has been associated with sympathetic control of the heart. Our findings revealed sex differences in both the physiological and forebrain responses to isometric exercise.


1983 ◽  
Vol 54 (2) ◽  
pp. 434-437 ◽  
Author(s):  
D. R. Seals ◽  
R. A. Washburn ◽  
P. G. Hanson ◽  
P. L. Painter ◽  
F. J. Nagle

The purpose of this study was to investigate the influence of the size of the active muscle mass on the cardiovascular response to static contraction. Twelve male subjects performed one-arm handgrip (HG), two-leg extension (LE), and a “dead-lift” maneuver (DL) in a randomly assigned order for 3 min at 30% of maximal voluntary contraction. O2 uptake (VO2), heart rate (HR), and mean intra-arterial blood pressure (MABP) were measured at rest and, in addition to absolute tension exerted, throughout contraction. There was a direct relationship between the size of the active muscle mass and the magnitude of the increases in VO2, HR, and MABP, even though all contractions were performed at the same relative intensity. Tension, VO2, HR, and MABP increased progressively from HG to LE to DL. It was concluded that at the same percentage of maximal voluntary contraction, the magnitude of the cardiovascular response to isometric exercise is directly influenced by the size of the contracting muscle mass.


2000 ◽  
Vol 89 (4) ◽  
pp. 1420-1424 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara ◽  
Tetsuo Fukunaga

The purpose of the study was to examine the effect of prolonged tonic vibration applied to a single synergist muscle on maximal voluntary contraction (MVC) and maximal rate of force development (dF/d t max). The knee extension MVC force and surface electromyogram (EMG) from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) during MVC were recorded before and after vibration of RF muscle at 30 Hz for 30 min. MVC, dF/d t max, and the integrated EMG (iEMG) of RF decreased significantly after prolonged tonic vibration in spite of no changes in iEMG of VL and VM. The present results indicate that MVC and dF/d t max may be influenced by the attenuated Ia afferent functions of a single synergist muscle.


2018 ◽  
Vol 1 (68) ◽  
Author(s):  
Nerijus Masiulis ◽  
Albertas Skurvydas ◽  
Sigitas Kamandulis ◽  
Audrius Sniečkus ◽  
Marius Brazaitis ◽  
...  

Following an acute physical exercise, both post-activation potentiation and fatigue of the neuromuscular apparatus may occur. The voluntary recruitment of motor units occurs with frequencies that elicit incompletely fused tetanic contractions and these frequencies are most susceptible for post-activation potentiation as well as low-frequency fatigue. Therefore, the goal of the present study was to investigate which of the processes post-activation potentiation or low-frequency fatigue will be prevalent after 5 s maximal voluntary contraction (MVC). Eight healthy untrained men (age 24—35 years, mass 81.2 ± 5.1 kg) performed maximal sustained isometric knee extension for 5 s at a knee angle of 90 degrees. The contractile properties of quadriceps muscle evoked by electrical stimulation at 1, 7, 10, 15, 20, 50 Hz and 100 Hz, were recorded before and immediately after the exercise and 3, 5, and 10 min following the exercise. The rest interval between muscle electrical stimulation was 3 s. A significant raise of force evoked by 1—15 Hz stimulation was observed immediately after the 5 s MVC exercise (p < 0.01). Later in recovery (at 10 min) the contraction force at 15 Hz and 20 Hz significantly decreased (p < 0.05). Tetanic force at 50 Hz and 100 Hz demonstrated a significant decrease immediately after the exercise and remained depressed up to 3 min (p < 0.01). The ratio of 20 / 50 Hz recorded immediately after the 5 s MVC increased significantly (p < 0.05), however 10 min after the exercise there was a significant decrease compared to its initial level (p < 0.05). The simultaneous occurrence of post-activation potentiation at low stimulation frequencies and suppressed forces at high stimulation frequencies suggests that potentiation and fatigue mechanisms were acting concurrently. Moreover, when post-activation potentiation is lost (in 10 min after the 5 s MVC exercise), the contraction force at low stimulation frequencies decreases resulting in significant low-frequency fatigue.Keywords: isometric exercise, electrical stimulation, low-frequency fatigue, recovery.


2020 ◽  
Vol 128 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Eline Lievens ◽  
Malgorzata Klass ◽  
Tine Bex ◽  
Wim Derave

Human fast-twitch muscle fibers generate high power in a short amount of time but are easily fatigued, whereas slow-twitch fibers are more fatigue resistant. The transfer of this knowledge to coaching is hampered by the invasive nature of the current evaluation of muscle typology by biopsies. Therefore, a noninvasive method was developed to estimate muscle typology through proton magnetic resonance spectroscopy in the gastrocnemius. The aim of this study was to investigate whether male subjects with an a priori-determined fast typology (FT) are characterized by a more pronounced Wingate exercise-induced fatigue and delayed recovery compared with subjects with a slow typology (ST). Ten subjects with an estimated higher percentage of fast-twitch fibers and 10 subjects with an estimated higher percentage of slow-twitch fibers underwent the test protocol, consisting of three 30-s all-out Wingate tests. Recovery of knee extension torque was evaluated by maximal voluntary contraction combined with electrical stimulation up to 5 h after the Wingate tests. Although both groups delivered the same mean power across all Wingates, the power drop was higher in the FT group (−61%) compared with the ST group (−41%). The torque at maximal voluntary contraction had fully recovered in the ST group after 20 min, whereas the FT group had not yet recovered 5 h into recovery. This noninvasive estimation of muscle typology can predict the extent of fatigue and time to recover following repeated all-out exercise and may have applications as a tool to individualize training and recovery cycles. NEW & NOTEWORTHY A one-fits-all training regime is present in most sports, though the same training implies different stimuli in athletes with a distinct muscle typology. Individualization of training based on this muscle typology might be important to optimize performance and to lower the risk for accumulated fatigue and potentially injury. When conducting research, one should keep in mind that the muscle typology of participants influences the severity of fatigue and might therefore impact the results.


2011 ◽  
Vol 111 (6) ◽  
pp. 1694-1702 ◽  
Author(s):  
Matthew D. Muller ◽  
Zhaohui Gao ◽  
Rachel C. Drew ◽  
Michael D. Herr ◽  
Urs A. Leuenberger ◽  
...  

The effects of cold air inhalation and isometric exercise on coronary blood flow are currently unknown, despite the fact that both cold air and acute exertion trigger angina in clinical populations. In this study, we used transthoracic Doppler echocardiography to measure coronary blood flow velocity (CBV; left anterior descending coronary artery) and myocardial function during cold air inhalation and handgrip exercise. Ten young healthy subjects underwent the following protocols: 5 min of inhaling cold air (cold air protocol), 5 min of inhaling thermoneutral air (sham protocol), 2 min of isometric handgrip at 30% of maximal voluntary contraction (grip protocol), and 5 min of isometric handgrip at 30% maximal voluntary contraction while breathing cold air (cold + grip protocol). Heart rate, blood pressure, inspired air temperature, CBV, myocardial function (tissue Doppler imaging), O2 saturation, and pulmonary function were measured. The rate-pressure product (RPP) was used as an index of myocardial O2 demand, whereas CBV was used as an index of myocardial O2 supply. Compared with the sham protocol, the cold air protocol caused a significantly higher RPP, but there was a significant reduction in CBV. The cold + grip protocol caused a significantly greater increase in RPP compared with the grip protocol ( P = 0.045), but the increase in CBV was significantly less ( P = 0.039). However, myocardial function was not impaired during the cold + grip protocol relative to the grip protocol alone. Collectively, these data indicate that there is a supply-demand mismatch in the coronary vascular bed when cold ambient air is breathed during acute exertion but myocardial function is preserved, suggesting an adequate redistribution of blood flow.


1989 ◽  
Vol 66 (6) ◽  
pp. 2725-2732 ◽  
Author(s):  
S. E. Alway ◽  
J. D. MacDougall ◽  
D. G. Sale

Ultrastructural and twitch contractile characteristics of the human triceps surae were determined in seven healthy but very sedentary subjects before and after 16 wk of unilateral isometric training at 100% maximal voluntary contraction. After training, twitch contraction time decreased by approximately 20%. One-half relaxation time, peak twitch torque, and percent fiber type in any of the muscles of the triceps surae complex were not changed by training. Type I and type II fiber areas increased in the soleus by approximately 30%, but only type II fibers showed an increased in area in the lateral gastrocnemius (40%). Despite such changes in fiber area, the volume density of the sarcoplasmic reticulum-transverse tubular (SR) network averaged 3.2 +/- 0.6 and 5.9 +/- 0.9% in type I and type II fibers, respectively, before and after training in the two heads of the gastrocnemius. Type I SR fraction increased to 3.5 +/- 1.2% after training in the soleus; however, correlations were not significant between the change in the volume density of SR and the change in twitch contraction time (R = 0.46, P = 0.45) or the change in one-half relaxation time (R = -0.68, P = 0.08). The results demonstrate that isometric training at 100% maximal voluntary contraction induced changes in twitch contraction time that were not directly related to changes in the volume density of SR in fibers of the triceps surae.


Sign in / Sign up

Export Citation Format

Share Document