Plasma Angiotensin II Concentration Regulates Vascular but Not Adrenal Responsiveness to Restriction of Sodium Intake in Normal Man

1981 ◽  
Vol 61 (5) ◽  
pp. 527-534 ◽  
Author(s):  
Bess F. Dawson-Hughes ◽  
T. J. Moore ◽  
R. G. Dluhy ◽  
N. K. Hollenberg ◽  
G. H. Williams

1. Sodium restriction increases adrenal and decreases vascular sensitivity to angiotensin II (ANG II). These responses may be mediated either by the circulating level of ANG II or other mechanisms also modified by a change in sodium balance. To assess the importance of the ANG II level, captopril, an oral converting enzyme inhibitor, was used to lower the plasma ANG II level to the sodium-loaded range while maintaining subjects in low sodium balance. 2. Normal volunteer subjects received an infusion of ANG II in increasing doses in three states: high sodium intake, low sodium intake and low sodium intake after pretreatment with captopril. 3. Basal levels of ANG II on high-sodium diet and low-sodium diet plus captopril were similar. In the ANG II infusion studies the slope of the aldosterone—ANG II regression line on low sodium intake was significantly steeper than that on high sodium intake. After the addition of captopril the slope was not decreased, indicating that the endogenous ANG II concentration is not necessary to maintain adrenal sensitivity during sodium restriction. 4. In the ANG II infusion studies the slope of the mean blood pressure—ANG II regression line on high sodium intake was significantly steeper than that on low sodium intake. The addition of captopril to sodium-restricted subjects caused the slope of the regression relationship to increase significantly, consistent with an enhanced vascular responsiveness when endogenous ANG II levels were lowered. However, the slope on low sodium plus captopril did not increase to the level of subjects on a high-sodium diet, suggesting that factors in addition to the circulating ANG II level are also important in regulating the vascular responsiveness to ANG II.

1989 ◽  
Vol 77 (4) ◽  
pp. 389-394 ◽  
Author(s):  
Minoru Kawamura ◽  
Yuhei Kawano ◽  
Kaoru Yoshida ◽  
Masahito Imanishi ◽  
Satoshi Akabane ◽  
...  

1. Angiotensin (ANG) levels were measured in the cerebrospinal fluid of 15 patients with essential hypertension on a high sodium diet for 1 week and on a low sodium diet for a further week. ANGs were determined using a system of extraction by Sep-Pak cartridges followed by h.p.l.c. combined with radioimmunoassay. 2. Sodium depletion resulted in increases of ANG II in the cerebrospinal fluid from 1.16 ± 0.38 (sem) to 1.83 ± 0.43 fmol/ml (P < 0.01) and of ANG III from 0.65 ± 0.11 to 0.86 ± 0.15 fmol/ml (P < 0.01). 3. The ANG II level in the cerebrospinal fluid was found to be unchanged and recovery of added ANG II was approximately 90%, even after incubation for 3 h, on both diets. Thus, it is unlikely that ANG II is produced or degraded in the cerebrospinal fluid in vitro. 4. There was no significant correlation between the cerebrospinal fluid and the plasma ANG II concentration on the low sodium diet. 5. These results suggest that the cerebrospinal fluid ANG II level increases with sodium depletion, and that the effect of the level of ANG II on the activity of the angiotensin-forming system in the central nervous system may be assessed by determination of ANG II in the cerebrospinal fluid in patients with essential hypertension.


2002 ◽  
Vol 282 (1) ◽  
pp. R19-R30 ◽  
Author(s):  
Ulla C. Kopp ◽  
Michael Z. Cicha ◽  
Lori A. Smith

Increasing renal pelvic pressure increases afferent renal nerve activity (ARNA) by a prostaglandin E2(PGE2)-mediated release of substance P (SP) from renal pelvic sensory nerves. We examined whether the ARNA responses were modulated by high- and low-sodium diets. Increasing renal pelvic pressure resulted in greater ARNA responses in rats fed a high-sodium than in those fed a low-sodium diet. In rats fed a low-sodium diet, increasing renal pelvic pressure 2.5 and 7.5 mmHg increased ARNA 2 ± 1 and 13 ± 1% before and 12 ± 1 and 22 ± 2% during renal pelvic perfusion with 0.44 mM losartan. In rats fed a high-sodium diet, similar increases in renal pelvic pressure increased ARNA 10 ± 1 and 23 ± 3% before and 1 ± 1 and 11 ± 2% during pelvic perfusion with 15 nM ANG II. The PGE2-mediated release of SP from renal pelvic nerves in vitro was enhanced in rats fed a high-sodium diet and suppressed in rats fed a low-sodium diet. The PGE2 concentration required for SP release was 0.03, 0.14, and 3.5 μM in rats fed high-, normal-, and low-sodium diets. In rats fed a low-sodium diet, PGE2increased renal pelvic SP release from 5 ± 1 to 6 ± 1 pg/min without and from 12 ± 1 to 21 ± 2 pg/min with losartan in the incubation bath. Losartan had no effect on SP release in rats fed normal- and high-sodium diets. ANG II modulates the responsiveness of renal pelvic mechanosensory nerves by inhibiting PGE2-mediated SP release from renal pelvic nerve fibers.


2011 ◽  
Vol 300 (2) ◽  
pp. R298-R310 ◽  
Author(s):  
Ulla C. Kopp ◽  
Michael Z. Cicha ◽  
Lori A. Smith ◽  
Saku Ruohonen ◽  
Mika Scheinin ◽  
...  

Activation of efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which then reflexively decreases ERSNA via activation of the renorenal reflexes to maintain low ERSNA. The ERSNA-ARNA interaction is mediated by norepinephrine (NE) that increases and decreases ARNA by activation of renal α1-and α2-adrenoceptors (AR), respectively. The ERSNA-induced increases in ARNA are suppressed during a low-sodium (2,470 ± 770% s) and enhanced during a high-sodium diet (5,670 ± 1,260% s). We examined the role of α2-AR in modulating the responsiveness of renal sensory nerves during low- and high-sodium diets. Immunohistochemical analysis suggested the presence of α2A-AR and α2C-AR subtypes on renal sensory nerves. During the low-sodium diet, renal pelvic administration of the α2-AR antagonist rauwolscine or the AT1 receptor antagonist losartan alone failed to alter the ARNA responses to reflex increases in ERSNA. Likewise, renal pelvic release of substance P produced by 250 pM NE (from 8.0 ± 1.3 to 8.5 ± 1.6 pg/min) was not affected by rauwolscine or losartan alone. However, rauwolscine+losartan enhanced the ARNA responses to reflex increases in ERSNA (4,680 ± 1,240%·s), and renal pelvic release of substance P by 250 pM NE, from 8.3 ± 0.6 to 14.2 ± 0.8 pg/min. During a high-sodium diet, rauwolscine had no effect on the ARNA response to reflex increases in ERSNA or renal pelvic release of substance P produced by NE. Losartan was not examined because of low endogenous ANG II levels in renal pelvic tissue during a high-sodium diet. Increased activation of α2-AR contributes to the reduced interaction between ERSNA and ARNA during low-sodium intake, whereas no/minimal activation of α2-AR contributes to the enhanced ERSNA-ARNA interaction under conditions of high sodium intake.


1995 ◽  
Vol 88 (5) ◽  
pp. 525-531 ◽  
Author(s):  
Florence Wong ◽  
Arieh Bomzon ◽  
Alexander Logan ◽  
Laurence Blendis

1. This study assesses the effects of sodium status on venous responsiveness to noradrenaline and the neurohumoral profile in pre-ascitic cirrhotic patients. Eight cirrhotic patients and ten control subjects were studied after both a low (20 mmol/day) and a high (200 mmol/day) sodium diet. Venous responsiveness to increasing doses of noradrenaline in a dorsal hand vein and various plasma hormone levels were measured. Maximal response (Rmax.) and the dose of noradrenaline that yielded 50% of Rmax (ED50) were then calculated. 2. A significantly smaller dorsal hand vein diameter was observed in the control subjects on a low sodium (2.23 ± 0.14 mm) compared with a high sodium (2.57 ± 0.15 mm; P = 0.04) diet, but not in the cirrhotic patients. Rmax. was not significantly different in either group on both diets. With low sodium intake, ED50 was similar in the two groups. However, on high sodium intake, control subjects had a significantly higher ED50 (34.4 ± 7.4 ng/min) than the cirrhotic patients (5.03 ± 0.86 ng/min; P < 0.003). Plasma noradrenaline in the control subjects fell significantly with the change from a low (1.29 ± 0.11 nmol/l) to a high (0.68 ± 0.09 nmol/l; P < 0.001) sodium diet, but remained elevated in the cirrhotic patients. Cirrhotic patients had significantly higher atrial natriuretic factor levels and lower plasma renin activity than the control subjects on both diets. 3. In conclusion, pre-ascitic cirrhotic patients show no evidence of venodilatation. Their sympathetic nervous activity is not suppressible by volume expansion. Relative hyper-responsiveness of the peripheral venous circulation to adrenergic stimulation with high sodium intake is present.


2012 ◽  
Vol 112 (6) ◽  
pp. 1049-1053 ◽  
Author(s):  
John H. Eisenach ◽  
Leah R. Gullixson ◽  
Susan L. Kost ◽  
Michael J. Joyner ◽  
Stephen T. Turner ◽  
...  

Dietary sodium and blood pressure regulation differs between normotensive men and women, an effect which may involve endothelial production of nitric oxide (NO). Therefore, we tested the hypothesis that differences in the NO component of endothelium-dependent vasodilation between low and high dietary sodium intake depend on sex. For 5 days prior to study, healthy adults consumed a controlled low-sodium diet (10 mmol/day, n = 30, mean age ± SE: 30 ± 1 yr, 16 men) or high-sodium diet (400 mmol/day, n = 36, age 23 ± 1 yr, 13 men). Forearm blood flow (FBF, plethysmography) responses to brachial artery administration of acetylcholine (ACh, 4 μg·100 ml tissue−1·min−1) were measured before and after endothelial NO synthase inhibition with NG-monomethyl-l-arginine (l-NMMA, 50 mg bolus + 1 mg/min infusion). The NO component of endothelium-dependent dilation was calculated as the response to ACh before and after l-NMMA accounting for changes in baseline FBF: [(FBF ACh − FBF baseline) − (FBF AChL-NMMA − FBF baselineL-NMMA)]. This value was 5.7 ± 1.3 and 2.5 ± 0.8 ml·100 ml forearm tissue−1·min−1 for the low- and high-sodium diets, respectively (main effect of sodium, P = 0.019). The sodium effect was larger for the men, with values of 7.9 ± 2.0 and 2.2 ± 1.4 for men vs. 3.1 ± 1.3 and 2.7 ± 1.0 ml·100 ml forearm tissue−1·min−1 for the women ( P = 0.034, sex-by-sodium interaction). We conclude that the NO component of endothelium-dependent vasodilation is altered by dietary sodium intake based on sex, suggesting that endothelial NO production is sensitive to dietary sodium in healthy young men but not women.


1992 ◽  
Vol 262 (1) ◽  
pp. R61-R71 ◽  
Author(s):  
J. E. Hall ◽  
H. L. Mizelle ◽  
M. W. Brands ◽  
D. A. Hildebrandt

In normal subjects, high sodium intake causes little change in mean arterial pressure (MAP). However, MAP is sodium sensitive after reduction of kidney mass. The present study examined the role of increased renal artery pressure and decreased angiotensin II (ANG II) formation in maintaining sodium balance during high sodium intake in dogs with reduced kidney mass. In seven dogs with pressure natriuresis intact, increasing sodium intake from 36 to 466 meq/day for 7 days raised MAP from 91 +/- 2 to 106 +/- 2 mmHg. Sodium excretion increased promptly and cumulative sodium balance increased by only 80 +/- 26 meq after 7 days of high sodium intake. When renal perfusion pressure was servo-controlled to prevent pressure natriuresis, comparable increases in sodium intake raised MAP from 88 +/- 2 to 128 +/- 4 mmHg after 7 days. Sodium excretion rose to match intake, but cumulative sodium balance increased by 226 +/- 34 meq after 7 days. In dogs in which ANG II levels were held constant by converting enzyme inhibition and constant ANG II infusion (2 ng.kg-1.min-1 iv), raising sodium intake for 7 days elevated MAP from 126 +/- 2 to 146 +/- 4 mmHg after 7 days while increasing cumulative sodium balance by 212 +/- 29 meq. When renal perfusion pressure was servo-controlled and ANG II levels held constant, raising sodium intake elevated MAP from 125 +/- 3 to 166 +/- 11 mmHg and increased cumulative sodium balance by 399 +/- 128 meq. These data indicate that pressure natriuresis and decreased ANG II formation are important in minimizing sodium retention and hypertension during high sodium intake. However, other mechanisms can increase sodium excretion independent of pressure natriuresis and suppression of ANG II during salt-induced hypertension.


2012 ◽  
Vol 303 (3) ◽  
pp. F412-F419 ◽  
Author(s):  
Preethi Samuel ◽  
Quaisar Ali ◽  
Rifat Sabuhi ◽  
Yonnie Wu ◽  
Tahir Hussain

High sodium intake is known to regulate the renal renin-angiotensin system (RAS) and is a risk factor for the pathogenesis of obesity-related hypertension. The complex nature of the RAS reveals that its various components may have opposing effects on natriuresis and blood pressure regulation. We hypothesized that high sodium intake differentially regulates and shifts a balance between opposing components of the renal RAS, namely, angiotensin-converting enzyme (ACE)-ANG II-type 1 ANG II receptor (AT1R) vs. AT2-ACE2-angiotensinogen (Ang) (1–7)-Mas receptor (MasR), in obesity. In the present study, we evaluated protein and/or mRNA expression of angiotensinogen, renin, AT1A/BR, ACE, AT2R, ACE2, and MasR in the kidney cortex following 2 wk of a 8% high-sodium (HS) diet in lean and obese Zucker rats. The expression data showed that the relative expression pattern of ACE and AT1BR increased, renin decreased, and ACE2, AT2R, and MasR remained unaltered in HS-fed lean rats. On the other hand, HS intake in obese rats caused an increase in the cortical expression of ACE, a decrease in ACE2, AT2R, and MasR, and no changes in renin and AT1R. The cortical levels of ANG II increased by threefold in obese rats on HS compared with obese rats on normal salt (NS), which was not different than in lean rats. The HS intake elevated mean arterial pressure in obese rats (27 mmHg) more than in lean rats (16 mmHg). This study suggests that HS intake causes a pronounced increase in ANG II levels and a reduction in the expression of the ACE2-AT2R-MasR axis in the kidney cortex of obese rats. We conclude that such changes may lead to the potentially unopposed function of AT1R, with its various cellular and physiological roles, including the contribution to the pathogenesis of obesity-related hypertension.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Allison Jasti ◽  
Deborah L Stewart ◽  
Gregory A Harshfield

Background: The skeleton is vital to sodium homeostasis, accounting for 40% of the body’s sodium. Research indicates stress and low sodium intake are independently associated with RAAS activation. In certain populations, stress can induce salt sensitivity, increasing the risk of hypertension and target organ damage, but the association of low versus high sodium intake with bone health is controversial. Purpose: This study sought out the relationship of low sodium and stress-induced RAAS activation with bone health. The tested hypothesis was those with lowest sodium intake would have lower total bone mineral density (TBMD) and content (TBMC) associated with stress-induced increases in angiotensin ii (Ang II) and aldosterone (Aldo). Methods: We compared effect of stress on Ang II, Aldo, TBMD and TMBC in healthy Caucasian and African-American adolescents. Subjects were grouped by quartiles based on sodium intake, assessed by urinary sodium excretion. Results: Due to females, overall significant inverse associations are observed between TBMD, TBMC, Ang II and Aldo in the lowest sodium intake quartile. Post-stress, women in the lowest sodium intake quartile showed that increases in both Ang II and Aldo correspond with lower TMBC and TMBD. There was no significance between Ang II, Aldo, TMBC and TMBD in the three highest quartiles of women nor in any male quartile. Conclusion: These data suggest Ang II and Aldo may reduce TMBC and TMBD in women. Stress-induced increases in Ang II and Aldo, with low sodium intake, may further reduce TBMD and TBMC in women. Ang II inhibition and/or moderated salt intake may be an efficacious prevention or treatment against the development of osteoporosis.


Author(s):  
Jiang He ◽  
Jian-Feng Huang ◽  
Changwei Li ◽  
Jing Chen ◽  
Xiangfeng Lu ◽  
...  

Cross-sectional studies have reported that high sodium sensitivity is more common among individuals with hypertension. Experimental studies have also reported various animal models with sodium-resistant hypertension. It is unknown, however, whether sodium sensitivity and resistance precede the development of hypertension. We conducted a feeding study, including a 7-day low-sodium diet (1180 mg/day) followed by a 7-day high-sodium diet (7081 mg/day), among 1718 Chinese adults with blood pressure (BP) <140/90 mm Hg. We longitudinally followed them over an average of 7.4 years. Three BP measurements and 24-hour urinary sodium excretion were obtained on each of 3 days during baseline observation, low-sodium and high-sodium interventions, and 2 follow-up studies. Three trajectories of BP responses to dietary sodium intake were identified using latent trajectory analysis. Mean (SD) changes in systolic BP were −13.7 (5.5), −4.9 (3.0), and 2.4 (3.0) mm Hg during the low-sodium intervention and 11.2 (5.3), 4.4 (4.1), and −0.2 (4.1) mm Hg during the high-sodium intervention ( P <0.001 for group differences) in high sodium-sensitive, moderate sodium-sensitive, and sodium-resistant groups, respectively. Compared with individuals with moderate sodium sensitivity, multiple-adjusted odds ratios (95% CIs) for incident hypertension were 1.43 (1.03–1.98) for those with high sodium sensitivity and 1.43 (1.03–1.99) for those with sodium resistance ( P =0.006 for nonlinear trend). Furthermore, a J-shaped association between systolic BP responses to sodium intake and incident hypertension was identified ( P <0.001). Similar results were observed for diastolic BP. Our study indicates that individuals with either high sodium sensitivity or sodium resistance are at an increased risk for developing hypertension.


Sign in / Sign up

Export Citation Format

Share Document