Dilator actions of arginine in human peripheral vasculature

1991 ◽  
Vol 81 (5) ◽  
pp. 695-700 ◽  
Author(s):  
Alison Calver ◽  
Joe Collier ◽  
Patrick Vallance

1. l-Arginine is the physiological precursor for the formation of endothelium-derived nitric oxide. The synthesis of nitric oxide is stereospecific: d-arginine is not a substrate for nitric oxide synthase. It is possible that the provision of excess l-arginine substrate might increase the vascular synthesis of nitric oxide. We have examined this possibility by studying the effects of local infusion of l-and d-arginine in the forearm resistance bed and the superficial dorsal hand veins of healthy subjects. 2. Drugs were either infused locally into a vein on the back of the hand and then the vein diameter was measured using a linear displacement technique, or into the brachial artery and then the forearm blood flow was measured by venous occlusion plethysmography. 3. In the superficial hand veins, l- and d-arginine free base and l- and d-arginine hydrochloride (all four preparations at a dose of 5 μmol/min) all caused a significant increase in venous diameter. The responses of the l-and d-enantiomers did not differ significantly from one another. 4. In the forearm resistance bed, l- and d-arginine free base and l-arginine hydrochloride were without effect at doses of 10 and 40 μmol/min. However, at doses of 160 μmol/min all three preparations of arginine caused a significant increase in forearm blood flow compared with control values. The responses to the three preparations of arginine did not differ significantly from one another. 5. These results show that arginine in high dose is a vasodilator in both human resistance vessels and superficial veins in vivo. The response to arginine was not stereospecific: both the l- and d-enantiomers had the same effect. The dilator effect of high-dose arginine showed neither arterio-nor veno-selectivity. 6. This suggests that the hypotensive effect of systemic infusions of l-arginine in man is mediated by peripheral vasodilatation. It is not possible to ascribe the actions of arginine supplementation in this study to activation of the l-arginine/nitric oxide pathway through the provision of excess substrate.

2002 ◽  
Vol 283 (4) ◽  
pp. H1354-H1360 ◽  
Author(s):  
Daniel Green ◽  
Craig Cheetham ◽  
Chelsea Henderson ◽  
Rukshen Weerasooriya ◽  
Gerard O'Driscoll

We examined the hypothesis that changes in heart rate at rest influence bioactivity of nitric oxide (NO) in humans by examining forearm blood flow responses during cardiac pacing in six subjects. Peak forearm and mean forearm blood flows across the cardiac cycle were continuously recorded at baseline and during pacing, with the use of high-resolution brachial artery ultrasound and Doppler flow velocity measurement. The brachial artery was cannulated to allow continuous infusion of saline or N G-monomethyl-l-arginine (l-NMMA). As heart rate increased, no changes in pulse pressure and mean or peak blood flow were evident. l-NMMA had no effect on brachial artery diameter, velocity, or flows compared with saline infusion. These results contrast with our recent findings that exercise involving the lower body, associated with increases in heart rate and pulse pressure, also increased forearm blood flow, the latter response being diminished by l-NMMA. These data suggest that changes in blood pressure, rather than pulse frequency, may be the stimulus for shear stress-mediated NO release in vivo.


2012 ◽  
Vol 303 (2) ◽  
pp. H216-H223 ◽  
Author(s):  
Giacinta Guarini ◽  
Vahagn A. Ohanyan ◽  
John G. Kmetz ◽  
Daniel J. DelloStritto ◽  
Roslin J. Thoppil ◽  
...  

We have previously shown transient receptor potential vanilloid subtype 1 (TRPV1) channel-dependent coronary function is compromised in pigs with metabolic syndrome (MetS). However, the mechanisms through which TRPV1 channels couple coronary blood flow to metabolism are not fully understood. We employed mice lacking TRPV1 [TRPV1(−/−)], db/db diabetic, and control C57BKS/J mice to determine the extent to which TRPV1 channels modulate coronary function and contribute to vascular dysfunction in diabetic cardiomyopathy. Animals were subjected to in vivo infusion of the TRPV1 agonist capsaicin to examine the hemodynamic actions of TRPV1 activation. Capsaicin (1–100 μg·kg−1·min−1) dose dependently increased coronary blood flow in control mice, which was inhibited by the TRPV1 antagonist capsazepine or the nitric oxide synthase (NOS) inhibitor N-nitro-l-arginine methyl ester (l-NAME). In addition, the capsaicin-mediated increase in blood flow was attenuated in db/db mice. TRPV1(−/−) mice exhibited no changes in coronary blood flow in response to capsaicin. Vasoreactivity studies in isolated pressurized mouse coronary microvessels revealed a capsaicin-dependent relaxation that was inhibited by the TRPV1 inhibitor SB366791 l-NAME and to the large conductance calcium-sensitive potassium channel (BK) inhibitors iberiotoxin and Penetrim A. Similar to in vivo responses, capsaicin-mediated relaxation was impaired in db/db mice compared with controls. Changes in pH (pH 7.4–6.0) relaxed coronary vessels contracted to the thromboxane mimetic U46619 in all three groups of mice; however, pH-mediated relaxation was blunted in vessels obtained from TRPV1(−/−) and db/db mice compared with controls. Western blot analysis revealed decreased myocardial TRPV1 protein expression in db/db mice compared with controls. Our data reveal TRPV1 channels mediate coupling of myocardial blood flow to cardiac metabolism via a nitric oxide-dependent, BK channel-dependent pathway that is corrupted in diabetes.


1998 ◽  
Vol 85 (6) ◽  
pp. 2249-2254 ◽  
Author(s):  
R. W. Brock ◽  
M. E. Tschakovsky ◽  
J. K. Shoemaker ◽  
J. R. Halliwill ◽  
M. J. Joyner ◽  
...  

We tested the hypothesis that ACh or nitric oxide (NO) might be involved in the vasodilation that accompanies a single contraction of the forearm. Eight adults (3 women and 5 men) completed single 1-s-duration contractions of the forearm to raise and lower a weight equivalent to ∼20% maximal voluntary contraction through a distance of 5 cm. In a second protocol, each subject had a cuff, placed completely about the forearm, inflated to 120 mmHg for a 1-s period, then released as a simulation of the mechanical effect of muscle contraction. Three conditions were studied, always in this order: 1) control, with intra-arterial infusion of saline; 2) after muscarinic blockade with atropine; and 3) after NO synthase inhibition with N G-monomethyl-l-arginine (l-NMMA) plus atropine. Forearm blood flow (FBF), measured by combined pulsed and echo Doppler ultrasound, was reduced at rest with l-NMMA-atropine compared with the other two conditions. After the single contraction, there were no effects of atropine, butl-NMMA reduced the peak FBF and the total postcontraction hyperemia. After the single cuff inflation, atropine had no effects, whereasl-NMMA caused changes similar to those seen after contraction, reducing the peak FBF and the total hyperemia. The observation thatl-NMMA reduced FBF in response to both cuff inflation and a brief contraction indicates that NO from the vascular endothelium might modulate the basal level of vascular tone and the mechanical component of the hyperemia with exercise. It is unlikely that ACh and NO from the endothelium are involved in the dilator response to a single muscle contraction.


2005 ◽  
Vol 289 (2) ◽  
pp. H916-H923 ◽  
Author(s):  
Nelson N. Orie ◽  
Patrick Vallance ◽  
Dean P. Jones ◽  
Kevin P. Moore

It is now established that S-nitroso-albumin (SNO-albumin) circulates at low nanomolar concentrations under physiological conditions, but concentrations may increase to micromolar levels during disease states (e.g., cirrhosis or endotoxemia). This study tested the hypothesis that high concentrations of SNO-albumin observed in some diseases modulate vascular function and that it acts as a stable reservoir of nitric oxide (NO), releasing this molecule when the concentrations of low-molecular-weight thiols are increased. SNO-albumin was infused into rats to increase the plasma concentration from <50 nmol/l to ∼4 μmol/l. This caused a 29 ± 6% drop in blood pressure, 20 ± 4% decrease in aortic blood flow, and a 25 ± 14% reduction of renal blood flow within 10 min. These observations were in striking contrast to those of an infused arterial vasodilator (hydralazine), which increased aortic blood flow, and suggested that SNO-albumin acts primarily as a venodilator in vivo. This was confirmed by the observations that glyceryl trinitrate (a venodilator) led to similar hemodynamic changes and that the hemodynamic effects of SNO-albumin are reversed by infusion of colloid. Infusion of N-acetylcysteine into animals with artificially elevated plasma SNO-albumin concentrations led to the rapid decomposition of SNO-albumin in vivo and reproduced the hemodynamic effects of SNO-albumin infusion. These data demonstrate that SNO-albumin acts primarily as a venodilator in vivo and represents a stable reservoir of NO that can release NO when the concentrations of low-molecular-weight thiols are elevated.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Mike Seddon ◽  
Phil Chowienczyk ◽  
Narbeh Melikian ◽  
Rafal Dworakowski ◽  
Barbara Casadei ◽  
...  

Endothelial NO synthase (eNOS) is thought to be the major source of nitric oxide (NO) involved in the local regulation of human vascular tone. However, in studies using a selective neuronal NOS (nNOS) inhibitor S-methyl-L-thiocitrulline (SMTC), we recently reported that basal human forearm blood flow is regulated by nNOS. SMTC had no effect on acetylcholine-induced vasodilatation which however was inhibited by the non-selective NOS inhibitor N G monomethyl-L-arginine (L-NMMA). This study investigated the effects of nNOS in the human coronary circulation in vivo . We studied patients undergoing diagnostic cardiac catheterisation who had angiographically normal coronary arteries. Coronary flow velocity was measured by an intracoronary Doppler wire and epicardial artery diameter by QCA. We compared the effects of intracoronary SMTC or L-NMMA infusion on basal flow and the responses to substance P and isosorbide dinitrate (endothelium-dependent and -independent dilators, respectively). L-NMMA (25 μmol/min) reduced basal coronary flow by 22.3±5.3% and inhibited dilation to substance P (20 pmol/min) by 57±5.7% (n=8; both P<0.01). SMTC (0.625 μmol/min) also reduced basal flow (−34.8±6.3%; n=8; P<0.01), but had no effect on the response to substance P (inhibited by −2±14%; P=NS). The effects of SMTC were abolished by L-arginine (240μmol/ min; n=3). Both L-NMMA and SMTC reduced epicardial artery diameter (−2.5±0.6% and −2.8±0.9% respectively; P<0.05) but only L-NMMA reduced dilatation to substance P (5.6±1.3% before versus 3.0±0.8% after L-NMMA; P<0.05). These data indicate that local nNOS-derived NO regulates basal coronary blood flow in humans in vivo , whereas substance P-stimulated vasodilatation is eNOS-mediated. Our results indicate that nNOS and eNOS have distinct local roles in the physiological regulation of human coronary vascular tone in vivo .


2001 ◽  
Vol 280 (6) ◽  
pp. H2470-H2477 ◽  
Author(s):  
Julian P. J. Halcox ◽  
Suresh Narayanan ◽  
Laura Cramer-Joyce ◽  
Rita Mincemoyer ◽  
Arshed A. Quyyumi

The identity of endothelium-dependent hyperpolarizing factor (EDHF) in the human circulation remains controversial. We investigated whether EDHF contributes to endothelium-dependent vasomotion in the forearm microvasculature by studying the effect of K+ and miconazole, an inhibitor of cytochrome P-450, on the response to bradykinin in healthy human subjects. Study drugs were infused intra-arterially, and forearm blood flow was measured using strain-gauge plethysmography. Infusion of KCl (0.33 mmol/min) into the brachial artery caused baseline vasodilation and inhibited the vasodilator response to bradykinin, but not to sodium nitroprusside. Thus the incremental vasodilation induced by bradykinin was reduced from 14.3 ± 2 to 7.1 ± 2 ml · min−1 · 100 g−1( P < 0.001) after KCl infusion. A similar inhibition of the bradykinin ( P = 0.014), but not the sodium nitroprusside (not significant), response was observed with KCl after the study was repeated during preconstriction with phenylephrine to restore resting blood flow to basal values after KCl. Miconazole (0.125 mg/min) did not inhibit endothelium-dependent or -independent responses to ACh and sodium nitroprusside, respectively. However, after inhibition of cyclooxygenase and nitric oxide synthase with aspirin and N G-monomethyl-l-arginine, the forearm blood flow response to bradykinin ( P = 0.003), but not to sodium nitroprusside (not significant), was significantly suppressed by miconazole. Thus nitric oxide- and prostaglandin-independent, bradykinin-mediated forearm vasodilation is suppressed by high intravascular K+ concentrations, indicating a contribution of EDHF. In the human forearm microvasculature, EDHF appears to be a cytochrome P-450 derivative, possibly an epoxyeicosatrienoic acid.


1997 ◽  
Vol 273 (5) ◽  
pp. G1160-G1167 ◽  
Author(s):  
Edward N. Janoff ◽  
Hiroshi Hayakawa ◽  
David N. Taylor ◽  
Claudine E. Fasching ◽  
Julie R. Kenner ◽  
...  

Vibrio cholerae induces massive intestinal fluid secretion that continues for the life of the stimulated epithelial cells. Enhanced regional blood flow and peristalsis are required to adapt to this obligatory intestinal secretory challenge. Nitric oxide (NO) is a multifunctional molecule that modulates blood flow and peristalsis and possesses both cytotoxic and antibacterial activity. We demonstrate that, compared with those in asymptomatic control subjects, levels of stable NO metabolites ([Formula: see text]/[Formula: see text]) are significantly increased in sera from acutely ill Peruvian patients with natural cholera infection as well as from symptomatic volunteers from the United States infected experimentally with V. cholerae. In a rabbit ileal loop model in vivo, cholera toxin (CT) elicited fluid secretion and dose-dependent increases in levels of[Formula: see text]/[Formula: see text]in the fluid ( P < 0.01). In contrast, lipopolysaccharide (LPS) elicited no such effects when applied to the intact mucosa. NO synthase (NOS) catalytic activity also increased in toxin-exposed tissues ( P< 0.05), predominantly in epithelial cells. The CT-induced NOS activity was Ca2+dependent and was not suppressed by dexamethasone. In conclusion, symptomatic V. cholerae infection induces NO production in humans. In the related animal model, CT, but not LPS, stimulated significant production of NO in association with increases in local Ca2+-dependent NOS activity in the tissues.


1996 ◽  
Vol 271 (3) ◽  
pp. H1182-H1185 ◽  
Author(s):  
M. L. Blitzer ◽  
S. D. Lee ◽  
M. A. Creager

Endothelium-derived nitric oxide (EDNO) contributes to basal systemic vascular resistance under normoxic conditions. The purpose of this investigation was to determine whether EDNO contributes to the regulation of limb vascular resistance during hypoxia in healthy humans. Forearm blood flow was assessed by venous occlusion plethysmography. Hypoxia was induced by delivering a mixture of N2 and O2 via a gas blender adjusted to reduce the PO2 to 50 mmHg. During hypoxia, forearm blood flow increased from 2.4 +/- 0.2 to 3.0 +/- 0.3 ml.100 ml-1.min-1 (P < 0.001), and forearm vascular resistance decreased from 38 +/- 3 to 29 +/- 3 units (P < 0.001). The nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA, 2,000 micrograms/min intra-arterially) was administered to eight subjects. The percent increase in forearm vascular resistance after administration of L-NMMA was greater during hypoxia than normoxia (67 +/- 14 vs. 39 +/- 15%, P < 0.05). L-NMMA reduced the forearm vasodilator response to hypoxia from 27 +/- 3 to 11 +/- 5% (P = 0.01). To exclude the possibility that this attenuated response to hypoxia was a consequence of vasoconstriction and not specific for nitric oxide synthase inhibition, six subjects received intra-arterial phenylephrine. Phenylephrine did not affect the vasodilator response to hypoxia (17 +/- 3 vs. 21 +/- 6%, P = NS). It is concluded that EDNO contributes to hypoxia-induced vasodilation in the forearm resistance vessels in healthy humans.


2002 ◽  
Vol 102 (6) ◽  
pp. 661-666 ◽  
Author(s):  
R.C. WIMALASUNDERA ◽  
S.A.McG. THOM ◽  
L. REGAN ◽  
A.D. HUGHES

Endothelin-1 (ET-1) has been proposed to contribute to the regulation of vascular tone in humans. BQ-123, an ETA receptor antagonist, has also been reported to increase forearm blood flow (FBF) in vivo; however, the efficacy of BQ-123 as an antagonist of ET-1 has not been evaluated in the forearm. The present study investigated the effects of BQ-123 on changes in FBF in response to ET-1 and noradrenaline (NA; norepinephrine), taking into account the possible influence of vasodilator effects of BQ-123 on responses to vasoconstrictors. Six subjects (age 25-34 years) participated in a double-blind randomized study. FBF was measured by forearm occlusion plethysmography. Drugs were infused intra-arterially into the non-dominant arm (study arm) on four separate occasions; the non-infused arm was used as a control. The effects of BQ-123 (50nmol/min for 60min, or 300nmol/min for 5min followed by saline for 55min) were compared with the effects of infusion of sodium nitroprusside (SNP; 12nmol/min for 60min) or saline on vasoconstriction induced by ET-1 (10pmol/min for 7min) and NA (120pmol/min for 7min). Infusion of BQ-123 at either dose did not significantly increase FBF, whereas SNP increased FBF by 134% (P = 0.03). ET-1 significantly reduced FBF, and this effect was almost completely inhibited by both doses of BQ-123, but was unaffected by SNP. NA also reduced FBF, and this action was unaffected by BQ-123 or SNP. The data show that BQ-123 is a selective ET-1 antagonist, but do not confirm a major role for ET-1 in influencing resting forearm vascular tone in young normotensive subjects.


1997 ◽  
Vol 92 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Masanari Shiramoto ◽  
Tsutomu Imaizumi ◽  
Yoshitaka Hirooka ◽  
Toyonari Endo ◽  
Takashi Namba ◽  
...  

1. It has been shown in animals that substance P as well as acetylcholine releases endothelium-derived nitric oxide and evokes vasodilatation and that ATP-induced vasodilatation is partially mediated by nitric oxide. The aim of this study was to examine whether vasodilator effects of substance P and ATP are mediated by nitric oxide in humans. 2. In healthy volunteers (n = 35), we measured forearm blood flow by a strain-gauge plethysmograph while infusing graded doses of acetylcholine, substance P, ATP or sodium nitroprusside into the brachial artery before and after infusion of NG-monomethyl-l-arginine (4 or 8 μmol/min for 5 min). In addition, we measured forearm blood flow while infusing substance P before and during infusion of l-arginine (10 mg/min, simultaneously), or before and 1 h after oral administration of indomethacin (75 mg). 3. Acetylcholine, substance P, ATP or sodium nitroprusside increased forearm blood flow in a dose-dependent manner. NG-Monomethyl-l-arginine decreased basal forearm blood flow and inhibited acetylcholine-induced vasodilatation but did not affect substance P-, ATP-, or sodium nitroprusside-induced vasodilatation. Neither supplementation of l-arginine nor pretreatment with indomethacin affected substance P-induced vasodilatation. 4. Our results suggest that, in the human forearm vessels, substance P-induced vasodilatation may not be mediated by either nitric oxide or prostaglandins and that ATP-induced vasodilatation may also not be mediated by nitric oxide.


Sign in / Sign up

Export Citation Format

Share Document