Splanchnic and systemic haemodynamic response to volume changes in patients with cirrhosis and portal hypertension

1999 ◽  
Vol 96 (5) ◽  
pp. 475-481 ◽  
Author(s):  
Panagiotis VLAVIANOS ◽  
Padraik MAC MATHUNA ◽  
Roger WILLIAMS ◽  
David WESTABY

We investigated the haemodynamic response to volume depletion and subsequent repletion in patients with cirrhosis and portal hypertension. Twelve patients with compensated cirrhosis and portal hypertension were included in the study. The haemodynamic changes occurring after removal of approx. 15% of the blood volume, and subsequently after isovolume repletion with colloid, were assessed. Baseline haemodynamic measurements showed increased cardiac output and a systemic vascular resistance at the lower limit of normal. The hepatic venous pressure gradient (HVPG) was increased, at 18 mmHg. After depletion, arterial pressure, cardiac output and all right-heart-sided pressures decreased, and systemic vascular resistance increased. HVPG decreased to 16.0 mmHg. All the above changes were statistically significant. After blood volume restitution, the haemodynamic values returned to baseline. In particular, an increase in HVPG was shown in four out of the twelve patients (two with ascites and two without), which was small in three of them. However, HVPG remained the same as or lower than the baseline in the other eight patients. Patients with cirrhosis and portal hypertension exhibit an abnormal haemodynamic response to blood volume depletion. After volume repletion, no increase in the portal pressure was noted in this group of patients as a whole, although four out of the twelve patients did show an increase, possibly due to extensive collateral circulation.

2019 ◽  
Author(s):  
Wei Tan ◽  
Dong-chen Qian ◽  
Meng-meng Zheng ◽  
Xuan Lu ◽  
Yuan Han ◽  
...  

Abstract Background: The infusion of magnesium sulfate is well known to reduce arterial pressure and attenuate hemodynamic response to pneumoperitoneum. This study aimed to investigate whether different doses of magnesium sulfate can effectively attenuate the pneumoperitoneum-related hemodynamic changes and the release of vasopressin in patients undergoing laparoscopic gastrointestinal surgery. Methods: Sixty-nine patients undergoing laparoscopic partial gastrectomy were randomized into three groups: group L received magnesium sulfate 30 mg/kg loading dose and 15 mg/kg/h continuous maintenance infusion for 1 h; group H received magnesium sulfate 50 mg/kg followed by 30 mg/kg/h for 1 h; and group S (control group) received same volume 0.9% saline infusion, immediately before the induction of pneumoperitoneum. Systemic vascular resistance (SVR), cardiac output (CO), mean arterial pressure (MAP), heart rate (HR), central venous pressure(CVP), serum vasopressin and magnesium concentrations were measured. The extubation time, visual analogue scale were also assessed. The primary outcome is the difference in SVR between different groups. The secondary outcome is the differences of other indicators between groups, such as CO, MAP, HR, CVP, vasopressin and postoperative pain score. Results: Pneumoperitoneum instantly resulted in a significant reduction of cardiac output and an increase in mean arterial pressure, systemic vascular resistance, central venous pressure and heart rate in the control group (P < 0.01). The mean arterial pressure (T2 – T4), systemic vascular resistance (T2 – T3), central venous pressure(T3-T5) and the level of serum vasopressin were significantly lower (P < 0.05) and the cardiac output (T2 – T3) was significantly higher (P < 0.05) in group H than those in the control group. The mean arterial pressure (T4), systemic vascular resistance (T2), and central venous pressure(T3-T4) were significantly lower in group H than those in group L (P < 0.05). Furthermore, the visual analog scales at 5 min and 20 min, the level of vasopressin, and the dose of remifentanil were significantly decreased in group H compared to the control group and group L (P < 0.01). Conclusion: Magnesium sulfate could safely and effectively attenuate the pneumoperitoneum-related hemodynamic instability during gastrointestinal laparoscopy and improve postoperative pain at serum magnesium concentrations above 2 mmol/L.


2019 ◽  
Author(s):  
Wei Tan ◽  
Dong-chen Qian ◽  
Meng-meng Zheng ◽  
Xuan Lu ◽  
Yuan Han ◽  
...  

Abstract Background: The infusion of magnesium sulfate is well known to reduce arterial pressure and attenuate hemodynamic response to pneumoperitoneum. This study aimed to investigate whether different doses of magnesium sulfate can effectively attenuate the pneumoperitoneum-related hemodynamic changes and the release of vasopressin in patients undergoing laparoscopic gastrointestinal surgery. Methods: Sixty-nine patients undergoing laparoscopic partial gastrectomy were randomized into three groups: group L received magnesium sulfate 30 mg/kg loading dose and 15 mg/kg/h continuous maintenance infusion for 1 h; group H received magnesium sulfate 50 mg/kg followed by 30 mg/kg/h for 1 h; and group S (control group) received same volume 0.9% saline infusion, immediately before the induction of pneumoperitoneum. Systemic vascular resistance (SVR), cardiac output (CO), mean arterial pressure (MAP), heart rate (HR), central venous pressure(CVP), serum vasopressin and magnesium concentrations were measured. The extubation time, visual analogue scale were also assessed. The primary outcome is the difference in SVR between different groups. The secondary outcome is the differences of other indicators between groups, such as CO, MAP, HR, CVP, vasopressin and postoperative pain score. Results: Pneumoperitoneum instantly resulted in a significant reduction of cardiac output and an increase in mean arterial pressure, systemic vascular resistance, central venous pressure and heart rate in the control group (P < 0.01). The mean arterial pressure (T2 – T4), systemic vascular resistance (T2 – T3), central venous pressure(T3-T5) and the level of serum vasopressin were significantly lower (P < 0.05) and the cardiac output (T2 – T3) was significantly higher (P < 0.05) in group H than those in the control group. The mean arterial pressure (T4), systemic vascular resistance (T2), and central venous pressure(T3-T4) were significantly lower in group H than those in group L (P < 0.05). Furthermore, the visual analog scales at 5 min and 20 min, the level of vasopressin, and the dose of remifentanil were significantly decreased in group H compared to the control group and group L (P < 0.01). Conclusion: Magnesium sulfate could safely and effectively attenuate the pneumoperitoneum-related hemodynamic instability during gastrointestinal laparoscopy and improve postoperative pain at serum magnesium concentrations above 2 mmol/L.


2004 ◽  
Vol 96 (5) ◽  
pp. 1843-1853 ◽  
Author(s):  
Dan Drobin ◽  
B. Thomas Kjellstrom ◽  
Elisabeth Malm ◽  
Ashok Malavalli ◽  
Jeff Lohman ◽  
...  

Cell-free Hb increases systemic and pulmonary pressure and resistance and reduces cardiac output and heart rate in animals and humans, effects that have limited their clinical development as “blood substitutes.” The primary aim of this study was to evaluate the hemodynamic response to infusion of several formulations of a new polyethylene glycol (PEG)-modified human Hb [maleimide PEG Hb (MalPEGHb)] in swine, an animal known to be sensitive to Hb-induced vasoconstriction. Anesthetized animals underwent controlled hemorrhage (50% of blood volume), followed by resuscitation (70% of shed volume) with 10% pentastarch (PS), 4% MalPEG-Hb in lactated Ringer (MP4), 4% MalPEG-Hb in pentastarch (HS4), 2% MalPEG-Hb in pentastarch (HS2), or 4% stroma-free Hb in lactated Ringer solution (SFH). Compared with baseline, restoration of blood volume after resuscitation was similar and not significantly different for the PS (103%), HS2 (99%), HS4 (106%), and MP4 (87%) animals but significantly less for the SFH animals (66%) ( P < 0.05). All solutions that contained MalPEG-Hb restored mean arterial and pulmonary pressure and cardiac output. Systemic vascular resistance was unchanged, and pulmonary arterial pressure and resistance were increased slightly. Both systemic and pulmonary vascular resistance increased significantly in animals that received SFH, despite less adequate blood volume restoration. Oxygen consumption was maintained in all animals that received MalPEG-Hb, but not PS. Base excess improved only with MalPEG-Hb and PS, but not SFH. Red blood cell O2 extraction was significantly increased in animals that received Hb, regardless of formulation. These data demonstrate resuscitation with MalPEG-human Hb without increasing systemic vascular resistance and support our previous observations in animals suggesting that the efficacy of low concentrations of PEG-Hb in the plasma results from reduced vasoconstriction.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wei Tan ◽  
Dong-chen Qian ◽  
Meng-meng Zheng ◽  
Xuan Lu ◽  
Yuan Han ◽  
...  

Abstract Background The infusion of magnesium sulfate is well known to reduce arterial pressure and attenuate hemodynamic response to pneumoperitoneum. This study aimed to investigate whether different doses of magnesium sulfate can effectively attenuate the pneumoperitoneum-related hemodynamic changes and the release of vasopressin in patients undergoing laparoscopic gastrointestinal surgery. Methods Sixty-nine patients undergoing laparoscopic partial gastrectomy were randomized into three groups: group L received magnesium sulfate 30 mg/kg loading dose and 15 mg/kg/h continuous maintenance infusion for 1 h; group H received magnesium sulfate 50 mg/kg followed by 30 mg/kg/h for 1 h; and group S (control group) received same volume 0.9% saline infusion, immediately before the induction of pneumoperitoneum. Systemic vascular resistance (SVR), cardiac output (CO), mean arterial pressure (MAP), heart rate (HR), central venous pressure (CVP), serum vasopressin and magnesium concentrations were measured. The extubation time, visual analogue scale were also assessed. The primary outcome is the difference in SVR between different groups. The secondary outcome is the differences of other indicators between groups, such as CO, MAP, HR, CVP, vasopressin and postoperative pain score. Results Pneumoperitoneum instantly resulted in a significant reduction of cardiac output and an increase in mean arterial pressure, systemic vascular resistance, central venous pressure and heart rate in the control group (P <  0.01). The mean arterial pressure (T2 – T4), systemic vascular resistance (T2 – T3), central venous pressure(T3-T5) and the level of serum vasopressin were significantly lower (P <  0.05) and the cardiac output (T2 – T3) was significantly higher (P <  0.05) in group H than those in the control group. The mean arterial pressure (T4), systemic vascular resistance (T2), and central venous pressure(T3-T4) were significantly lower in group H than those in group L (P <  0.05). Furthermore, the visual analog scales at 5 min and 20 min, the level of vasopressin, and the dose of remifentanil were significantly decreased in group H compared to the control group and group L (P <  0.01). Conclusion Magnesium sulfate could safely and effectively attenuate the pneumoperitoneum-related hemodynamic instability during gastrointestinal laparoscopy and improve postoperative pain at serum magnesium concentrations above 2 mmol/L. Trial registration The study was retrospectively registered at Chinese Clinical Trial Registry; the registration number is ChiCTR-IPD-17011145, principal investigator: D.Y. Q., date of registration: April 13, 2017.


1981 ◽  
Vol 61 (s7) ◽  
pp. 173s-175s ◽  
Author(s):  
J. Ludbrook ◽  
I. B. Faris ◽  
G. G. Jamieson

1. The effects of acute blood volume change in conscious rabbits on a.c. gain of the carotid baroreceptor reflex with respect to heart rate, blood pressure, cardiac output and systemic vascular resistance were studied. 2. With acute, isohaemic increase in blood volume by 20% and 40% the only consistent trend was a decrease in gain for systemic vascular resistance. 3. With acute reduction in blood volume there was a consistent tendency for gain for heart rate to fall. With 20% reduction in blood volume, gain for cardiac output fell but gain for systemic vascular resistance rose and its phase-lag became shorter, so that gain for blood pressure was unaltered. The enhanced gain for systemic vascular resistance was not sustained with 35% reduction in blood volume, so that gain for blood pressure fell. 4. Thus control of blood pressure by the carotid sinus reflex is remarkably unaffected by acute change in blood volume, and is impaired only when there is depression of gain for cardiac output without a concomitant rise in gain for systemic vascular resistance.


1990 ◽  
Vol 78 (2) ◽  
pp. 193-197 ◽  
Author(s):  
Abraham Koshy ◽  
Tatsuya Sekiyama ◽  
Jean-Michel Cereda ◽  
Antoine Hadengue ◽  
Catherine Girod ◽  
...  

1. In order to study the acute effects of blood volume changes on the vascular resistance of portal-systemic collaterals (collateral vascular resistance), a model of total portal vein occlusion with 100% portal-systemic shunts was developed in the rat. In this model, we determined the haemodynamic effects of haemorrhage (1.8 ml/100 g body weight) or intravenous infusion of a volume expander (1.8 ml/100 g body weight). Cardiac output and regional blood flows were measured by the radioactive microsphere method. 2. Haemorrhage significantly reduced arterial pressure from 108 ± 4 to 92 ± 4 mmHg (mean ± sem), cardiac output from 56 ± 4 to 24 ± 2 ml min−1 100 g−1 body weight, portal pressure from 15.1 ± 1.5 to 10.0 ± 1.4 mmHg and portal tributary blood flow from 19.9 ± 2.3 to 8.3 ± 1.4 ml/min. Consequently, collateral vascular resistance significantly increased from 6.6 ± 0.9 × 103 to 11.1 ± 2.0 × 103 kPal−1 s. 3. Volume expansion reduced arterial pressure from 98 ± 3 to 90 ± 3 mmHg, and significantly increased cardiac output from 43 ± 3 to 55 ± 3 ml min−1 100 g−1 body weight, portal pressure from 13.9 ± 0.7 to 16.5 ± 0.8 mmHg and portal tributary blood flow from 16.4 ± 1.3 to 28.2 ± 3.2 ml/min. Consequently, collateral vascular resistance significantly decreased from 7.0 ± 0. 5 × 103 to 4.9 ± 0.4 × 103 kPa l−1 s. 4. This study shows that in rats with portal hypertension, portal-systemic collateral vascular resistance is modified by alterations in blood volume.


2019 ◽  
Author(s):  
Wei Tan ◽  
Dong-chen Qian ◽  
Meng-meng Zheng ◽  
Xuan Lu ◽  
Yuan Han ◽  
...  

Abstract Background: The infusion of magnesium sulfate is well known to reduce arterial pressure and attenuate hemodynamic response to pneumoperitoneum. This study aimed to investigate whether different doses of magnesium sulfate can effectively attenuate the pneumoperitoneum-related hemodynamic changes and the release of vasopressin in patients undergoing laparoscopic gastrointestinal surgery. Methods: Sixty-nine patients undergoing laparoscopic partial gastrectomy were randomized into three groups: group L received magnesium sulfate 30 mg/kg loading dose and 15 mg/kg/h continuous maintenance infusion for 1 h; group H received magnesium sulfate 50 mg/kg followed by 30 mg/kg/h for 1 h; and group S (control group) received same volume 0.9% saline infusion, immediately before the induction of pneumoperitoneum. Systemic vascular resistance (SVR), cardiac output (CO), mean arterial pressure (MAP), heart rate (HR), central venous pressure(CVP), serum vasopressin and magnesium concentrations were measured. The extubation time, visual analogue scale were also assessed. The primary outcome is the difference in SVR between different groups. The secondary outcome is the differences of other indicators between groups, such as CO, MAP, HR, CVP, vasopressin and postoperative pain score. Results: Pneumoperitoneum instantly resulted in a significant reduction of cardiac output and an increase in mean arterial pressure, systemic vascular resistance, central venous pressure and heart rate in the control group (P < 0.01). The mean arterial pressure (T2 – T4), systemic vascular resistance (T2 – T3), central venous pressure(T3-T5) and the level of serum vasopressin were significantly lower (P < 0.05) and the cardiac output (T2 – T3) was significantly higher (P < 0.05) in group H than those in the control group. The mean arterial pressure (T4) , systemic vascular resistance (T2) and central venous pressure(T3-T4) were significantly lower in group H than those in group L (P < 0.05). Furthermore, the visual analogue scales at 5 min and 20 min, the level of vasopressin, and the dosage of remifentanil were significantly decreased in group H compared to the control group and group L (P < 0.01). Conclusion: Magnesium sulfate could safely and effectively attenuate the pneumoperitoneum-related hemodynamic instability during gastrointestinal laparoscopy and improve postoperative pain at serum magnesium concentrations above 2 mmol/L.


2019 ◽  
Vol 126 (2) ◽  
pp. 444-453 ◽  
Author(s):  
Silvana Roberto ◽  
Raffaele Milia ◽  
Azzurra Doneddu ◽  
Virginia Pinna ◽  
Girolamo Palazzolo ◽  
...  

Metaboreflex is a reflex triggered during exercise or postexercise muscle ischemia (PEMI) by metaboreceptor stimulation. Typical features of metaboreflex are increased cardiac output (CO) and blood pressure. Patients suffering from metabolic syndrome display hemodynamic abnormalities, with an exaggerated systemic vascular resistance (SVR) and reduced CO response during PEMI-induced metaboreflex. Whether patients with type 2 diabetes mellitus (DM2) have similar hemodynamic abnormalities is unknown. Here we contrast the hemodynamic response to PEMI in 14 patients suffering from DM2 (age 62.7 ± 8.3 yr) and in 15 age-matched controls (CTLs). All participants underwent a control exercise recovery reference test and a PEMI test to obtain the metaboreflex response. Central hemodynamics were evaluated by unbiased operator-independent impedance cardiography. Although the blood pressure response to PEMI was not significantly different between the groups, we found that the SVR and CO responses were reversed in patients with DM2 as compared with the CTLs (SVR: 392.5 ± 549.6 and −14.8 ± 258.9 dyn·s−1·cm−5; CO: −0.25 ± 0.63 and 0.46 ± 0.50 l/m, respectively, in DM2 and in CTL groups, respectively; P < 0.05 for both). Of note, stroke volume (SV) increased during PEMI in the CTL group only. Failure to increase SV and CO was the consequence of reduced venous return, impaired cardiac performance, and augmented afterload in patients with DM2. We conclude that patients with DM2 have an exaggerated vasoconstriction in response to metaboreflex activation not accompanied by a concomitant increase in heart performance. Therefore, in these patients, blood pressure response to the metaboreflex relies more on SVR increases rather than on increases in SV and CO. NEW & NOTEWORTHY The main new finding of the present investigation is that subjects with type 2 diabetes mellitus have an exaggerated vasoconstriction in response to metaboreflex activation. In these patients, blood pressure response to the metaboreflex relies more on systemic vascular resistance than on cardiac output increments.


Sign in / Sign up

Export Citation Format

Share Document