Maternal protein restriction during pregnancy affects gene expression and immunolocalization of intestinal nutrient transporters in rats

2013 ◽  
Vol 125 (6) ◽  
pp. 281-289 ◽  
Author(s):  
Daniela F. Pinheiro ◽  
Patricia F. F. Pinheiro ◽  
José Buratini ◽  
Anthony C. S. Castilho ◽  
Paula F. Lima ◽  
...  

Intrauterine dietary restriction may cause changes in the functioning of offspring organs and systems later in life, an effect known as fetal programming. The present study evaluated mRNA abundance and immunolocalization of nutrient transporters as well as enterocytes proliferation in the proximal, median and distal segments of small intestine of rats born to protein-restricted dams. Pregnant rats were fed hypoproteic (6% protein) or control (17% protein) diets, and offspring rats were evaluated at 3 and 16 weeks of age. The presence of SGLT1 (sodium–glucose co-transporter 1), GLUT2 (glucose transporter 2), PEPT1 (peptide transporter 1) and the intestinal proliferation were evaluated by immunohistochemical techniques and the abundance of specific mRNA for SGLT1, GLUT2 and PEPT1 was assessed by the real-time PCR technique. Rats born to protein-restricted dams showed higher cell proliferation in all intestinal segments and higher gene expression of SGLT1 and PEPT1 in the duodenum. Moreover, in adult animals born to protein-restricted dams the immunoreactivity of SGLT1, GLUT2 and PEPT1in the duodenum was more intense than in control rats. Taken together, the results indicate that changes in the small intestine observed in adulthood can be programmed during the gestation. In addition, they show that this response is caused by both up-regulation in transporter gene expression, a specific adaptation mechanism, and intestinal proliferation, an unspecific adaptation mechanism.

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1735
Author(s):  
Kai Aoki ◽  
Takuji Suzuki ◽  
Fang Hui ◽  
Takuro Nakano ◽  
Koki Yanazawa ◽  
...  

The effects of exercise on nutrient digestion and absorption in the intestinal tract are not well understood. A few studies have reported that exercise training increases the expression of molecules involved in carbohydrate digestion and absorption. Exercise was also shown to increase the blood concentration of glucagon-like peptide-2 (GLP-2), which regulates carbohydrate digestion and absorption in the small intestine. Therefore, we investigated the effects of exercise on the expression of molecules involved in intestinal digestion and absorption, including GLP-2. Six-week-old male mice were divided into a sedentary (SED) and low-intensity exercise (LEx) group. LEx mice were required to run on a treadmill (12.5 m/min, 1 h), whereas SED mice rested. All mice were euthanized 1 h after exercise or rest, and plasma, jejunum, ileum, and colon samples were collected, followed by analysis via IHC, EIA, and immunoblotting. The levels of plasma GLP-2 and the jejunum expression of the GLP-2 receptor, sucrase-isomaltase (SI), and glucose transporter 2 (GLUT2) were higher in LEx mice. Thus, we showed that acute low-intensity exercise affects the expression of molecules involved in intestinal carbohydrate digestion and absorption via GLP-2. Our results suggest that exercise might be beneficial for small intestine function in individuals with intestinal frailty.


2015 ◽  
Vol 16 (6) ◽  
pp. 511-523 ◽  
Author(s):  
Ming-xia Chen ◽  
Xiang-guang Li ◽  
Jun-xian Yang ◽  
Chun-qi Gao ◽  
Bin Wang ◽  
...  

1994 ◽  
Vol 5 (5) ◽  
pp. S29
Author(s):  
J H Dominguez ◽  
B Song ◽  
L Maianu ◽  
W T Garvey ◽  
M Qulali

The functions of absorption of dietary glucose by the small intestine and reabsorption of filtered glucose by the renal proximal tubule are strikingly similar in their organization and in the way they adapt to uncontrolled diabetes mellitus. In both cases, transepithelial glucose and Na+ fluxes are augmented. The epithelial adaptations to hyperglycemia of uncontrolled diabetes are accomplished by increasing the glucose transport surface area and the number of the efflux glucose transporter GLUT2 located in the basolateral membrane. The signals that modify the size of the epithelium and the overexpression of basolateral GLUT2 are not known. It was speculated that high glucose levels and enhanced Na+ flux may be important factors in the signaling event that culminates in a renal and intestinal epithelium that is modified to transport higher rates of glucose against a higher extracellular level of glucose.


2020 ◽  
Vol 51 (6) ◽  
pp. 673-686
Author(s):  
Mirela Pavić ◽  
Marija Ljubojević ◽  
Ivona Žura Žaja ◽  
Ivana Prakatur ◽  
Manuela Grčević ◽  
...  

The duodenum, jejunum and ileum are parts of the small intestine and the sites of the terminal stages of enzymatic digestion, and the majority of nutrient, electrolyte and water absorption. The apical, luminal membrane of the enterocyte is built of numerous microvilli that increase the absorptive surface of the cell. Carbohydrates, in the form of monosaccharides, oligosaccharides and especially polysaccharides, make up the largest quantitative and energetic part of the diet of most animals, including humans. Galactose, fructose and glucose, the final degradation products of polysaccharide and oligosaccharide enzymatic digestion, can be absorbed by enterocytes either by active transport or by facilitated diffusion. In the small intestine, the transepithelial transport of glucose, the most abundant monosaccharide after carbohydrate digestion and the main source of energy, is performed by a specific membrane transporter located in the brush border membrane of the enterocyte, the sodiumglucose cotransporter 1 (SGLT1). While SGLT1 transports glucose across the brush border membrane, a specific basolateral membrane glucose transporter, the sodium-independent glucose transporter 2 (GLUT2), transfers glucose out of the enterocyte down the concentration gradient. The sodium-potassium pump (Na/KATPase), as a sodium and potassium ion transporter, is functionally closely related to the sodium-dependent SGLT1. Na/KATPase is responsible for maintaining the electrochemical gradient of sodium ions, as the driving force for glucose transport via SGLT1. Transepithelial transport of glucose in the small intestine and the differentiation of enterocytes occurs relatively early during the foetal period, allowing glucose to be absorbed from ingested amniotic fluid. Nutrient transport is possible along the whole villus-crypt axis during intrauterine development, while transport shifts toward the villus tip in the mature small intestine. With maturation, glucose transport rates change not only across the villus-crypt axis, but also along the proximodistal axis in the small intestine. The glucose absorption rate shows differences between subunits of the small intestine depending on the age and type of ingested carbohydrates, where complex carbohydrates replace less complex carbohydrates or disaccharides.


2007 ◽  
Vol 293 (2) ◽  
pp. G453-G460 ◽  
Author(s):  
G. E. Wild ◽  
L. E. Searles ◽  
K. G. Koski ◽  
L. A. Drozdowski ◽  
J. Begum-Hasan ◽  
...  

Gastrointestinal mucosal polyamines influence enterocyte proliferation and differentiation during small intestinal maturation in the rat. Studies in postnatal rats have shown that ornithine decarboxylase (ODC) protein and mRNA peak before the maximal expression of brush-border membrane (BBM) sucrase-isomaltase (SI) and the sugar transporters sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2). This study was undertaken to test the hypothesis that the oral administration of spermidine in postnatal rats upregulates the expression of ODC, thereby enhancing the expression of SI and SGLT1 in the brush-border membrane as well as basolateral membrane-facilitative GLUT2 and Na+-K+-ATPase. Northern and Western blot analyses were performed with antibodies and cDNA probes specific for SI, SGLT1, GLUT2, α1- and β1-subunits of Na+-K+-ATPase, and ODC. Postnatal rats fed 6 μmol spermidine daily for 3 days from days 7 to 9 were killed either on postnatal day 10 (Sp10) or day 13 following a 3-day washout period (Sp13). Sp10 rats showed a precocious increase in the abundance of mRNAs for SI, SGLT1, and GLUT2 and Na+-K+-ATPase activity and α1- and β1-isoform gene expression compared with controls. ODC activity and protein and mRNA abundance were also increased in Sp10 animals. The increased expression of these genes was not sustained in Sp13 rats, suggesting that these effects were transient. Thus, 3 days of oral polyamine administration induces the precocious maturation of glucose transporters in the postnatal rat small intestine, which may be mediated by alterations in ODC expression. 1 1 Supplemental material for this article is available online at the American Journal of Physiology-Gastrointestinal and Liver Physiology website.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Konstantinos Drosatos ◽  
Nina M Pollak ◽  
Florian Willecke ◽  
Panagiotis Ntziachristos ◽  
Chad M Trent ◽  
...  

Krüppel-like factors (KLF) affect metabolism. Lipopolysaccharide-induced sepsis reduced cardiac PPARα and increased KLF5 (8-fold) more than any cardiac KLF isoform detected by whole genome microarray analysis. In silico analysis of ppara gene promoter predicted two KLF5 binding sites that overlap with c-Jun (AP-1) binding sites: -792/-772 bp and -719/-698 bp. Infection of a mouse cardiomyocyte cell line (HL-1) with adenovirus expressing constitutively active c-Jun reduced, while Ad-KLF5 increased PPARα mRNA in a dose-dependent manner. Chromatin immunoprecipitation (ChIP) showed that c-Jun binds both -792/-772 bp and -719/-698 on ppara promoter while KLF5 binds on -792/-772 bp. ChIP on LPS-treated HL-1 cells showed that c-Jun binding on -792/-772 bp prohibits KLF5 binding. We generated a cardiomyocyte-specific KLF5 knockout mouse (αMHC-KLF5-/-), which had 50% normal cardiac function. Cardiomyocyte-specific KLF5 ablation reduced PPARα (50%) and several fatty acid metabolism-associated genes such as CD36 (40%), LpL (20%), PGC1α (45%), AOX (28%) and Cpt1 (45%). As PPARα regulates cardiac fatty acid metabolism, we tested whether cardiac KLF5 is modulated in diabetes, when cardiac PPARα and lipid changes occur. I.p. injection of streptozotocin (STZ) in C57BL/6 mice increased plasma glucose (2.9-fold) and reduced cardiac KLF5 and PPARα gene expression; similar to STZ-treated rats but unlike what had been found in a different mouse strain (C57BL/6 x DBA2) treated with STZ. Treatment of HL-1 cells with increased glucose-containing medium (1 mg/ml) reduced KLF5 (80%) and PPARα (65%), as well as fatty acid metabolism markers, such as AOX (85%), Cpt1β (70%), LCAD (80%) and VLCAD (85%). On the other hand GLUT1 and GLUT4 were increased (30% and 20%) and PDK4 was reduced (65%) indicating increased glucose utilization. A model of non-insulin dependent hyperglycemia (ob/ob mice) had reduced cardiac KLF5 (60%) and PPARα (65%). Correction of hyperglycemia in STZ-treated C57BL/6 mice by pharmacological (dapagliflozin) or antisense oligonucleotide inhibition of kidney’s sodium glucose transporter 2 (SGLT2), restored KLF5 and PPARα gene expression. Thus, KLF5 is a transcriptional regulator of cardiac PPARα that is driven by changes in plasma glucose levels


2000 ◽  
Vol 164 (3) ◽  
pp. 277-286 ◽  
Author(s):  
A Petryk ◽  
D Fleenor ◽  
P Driscoll ◽  
M Freemark

Previous studies have shown that lactogenic hormones stimulate beta-cell proliferation and insulin production in pancreatic islets. However, all such studies have been conducted in cells incubated in medium containing glucose. Since glucose independently stimulates beta-cell replication and insulin production, it is unclear whether the effects of prolactin (PRL) on insulin gene expression are exerted directly or through the uptake and/or metabolism of glucose. We examined the interactions between glucose and PRL in the regulation of insulin gene transcription and the expression of glucose transporter-2 (glut-2) and glucokinase mRNAs in rat insulinoma (INS-1) cells. In the presence of 5.5 mM glucose, the levels of preproinsulin and glut-2 mRNAs in PRL-treated cells exceeded the levels in control cells (1.7-fold, P<0.05 and 2-fold, P<0.05 respectively). The maximal effects of PRL were noted at 24-48 h of incubation. PRL had no effect on the levels of glucokinase mRNA. The higher levels of glut-2 mRNA were accompanied by an increase in the number of cellular glucose transporters, as demonstrated by a 1. 4- to 2.4-fold increase in the uptake of 2-deoxy-d-[(3)H]glucose in PRL-treated INS-1 cells (P<0.001). These findings suggested that the insulinotropic effect of PRL is mediated, in part, by induction of glucose transport and/or glucose metabolism. Nevertheless, even in the absence of glucose, PRL stimulated increases in the levels of preproinsulin mRNA (3.4-fold higher than controls, P<0.0001) and glut-2 mRNA (2-fold higher than controls, P<0.01). These observations suggested that PRL exerts glucose-independent as well as glucose-dependent effects on insulin gene expression. Support for this hypothesis was provided by studies of insulin gene transcription using INS-1 cells transfected with a plasmid containing the rat insulin 1 promoter linked to a luciferase reporter gene. Glucose and PRL, alone and in combination, stimulated increases in cellular luciferase activity. The relative potencies of glucose (5.5 mM) alone, PRL alone, and glucose plus PRL in combination were 2.2 (P<0.001), 3.4 (P<0.01), and 7.9 (P<0.0001) respectively. Our findings suggest that glucose and PRL act synergistically to induce insulin gene transcription.


Sign in / Sign up

Export Citation Format

Share Document