Hepatic accumulation of S-adenosylmethionine in hamsters with non-alcoholic fatty liver disease associated with metabolic syndrome under selenium and vitamin E deficiency

2019 ◽  
Vol 133 (3) ◽  
pp. 409-423 ◽  
Author(s):  
Josep Maria del Bas ◽  
Benjamín Rodríguez ◽  
Francesc Puiggròs ◽  
Silvia Mariné ◽  
Miguel Angel Rodríguez ◽  
...  

AbstractProgression of non-alcoholic fatty liver disease (NAFLD) in the context of metabolic syndrome (MetS) is only partially explored due to the lack of preclinical models. In order to study the alterations in hepatic metabolism that accompany this condition, we developed a model of MetS accompanied by the onset of steatohepatitis (NASH) by challenging golden hamsters with a high-fat diet low in vitamin E and selenium (HFD), since combined deficiency results in hepatic necroinflammation in rodents. Metabolomics and transcriptomics integrated analyses of livers revealed an unexpected accumulation of hepatic S-Adenosylmethionine (SAM) when compared with healthy livers likely due to diminished methylation reactions and repression of GNMT. SAM plays a key role in the maintenance of cellular homeostasis and cell cycle control. In agreement, analysis of over-represented transcription factors revealed a central role of c-myc and c-Jun pathways accompanied by negative correlations between SAM concentration, MYC expression and AMPK phosphorylation. These findings point to a drift of cell cycle control toward senescence in livers of HFD animals, which could explain the onset of NASH in this model. In contrast, hamsters with NAFLD induced by a conventional high-fat diet did not show SAM accumulation, suggesting a key role of selenium and vitamin E in SAM homeostasis. In conclusion, our results suggest that progression of NAFLD in the context of MetS can take place even in a situation of hepatic SAM excess and that selenium and vitamin E status might be considered in current therapies against NASH based on SAM supplementation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takuya Kawamura ◽  
Hiroaki Tanaka ◽  
Ryota Tachibana ◽  
Kento Yoshikawa ◽  
Shintaro Maki ◽  
...  

AbstractWe aimed to investigate the effects of maternal tadalafil therapy on fetal programming of metabolic function in a mouse model of fetal growth restriction (FGR). Pregnant C57BL6 mice were divided into the control, L-NG-nitroarginine methyl ester (L-NAME), and tadalafil + L-NAME groups. Six weeks after birth, the male pups in each group were given a high-fat diet. A glucose tolerance test (GTT) was performed at 15 weeks and the pups were euthanized at 20 weeks. We then assessed the histological changes in the liver and adipose tissue, and the adipocytokine production. We found that the non-alcoholic fatty liver disease activity score was higher in the L-NAME group than in the control group (p < 0.05). Although the M1 macrophage numbers were significantly higher in the L-NAME/high-fat diet group (p < 0.001), maternal tadalafil administration prevented this change. Moreover, the epididymal adipocyte size was significantly larger in the L-NAME group than in the control group. This was also improved by maternal tadalafil administration (p < 0.05). Further, we found that resistin levels were significantly lower in the L-NAME group compared to the control group (p < 0.05). The combination of exposure to maternal L-NAME and a high-fat diet induced glucose impairment and non-alcoholic fatty liver disease. However, maternal tadalafil administration prevented these complications. Thus, deleterious fetal programming caused by FGR might be modified by in utero intervention with tadalafil.


2021 ◽  
Vol 32 (4) ◽  
pp. 637-644
Author(s):  
Jamal Nasser Saleh Al-maamari ◽  
Mahardian Rahmadi ◽  
Sisca Melani Panggono ◽  
Devita Ardina Prameswari ◽  
Eka Dewi Pratiwi ◽  
...  

Abstract Objectives The study aimed to determine the effect of quercetin on the expression of primary regulator gene involved in lipogenesis and triglycerides synthesis in the liver, and the sterol regulatory binding protein-1c (SREBP-1c) mRNA in non-alcoholic fatty liver disease (NAFLD) with a high-fat diet (HFD) model. Methods Fifty-six Balb/c mice were divided into seven groups: standard feed; HFD; HFD and quercetin 50 mg/kg for 28 days; HFD and quercetin 100 mg/kg BW for 28 days; HFD and quercetin 50 mg/kg for 14 days; HFD and quercetin 100 mg/kg for 14 days; HFD and repaired fed for 14 days. Quercetin was administered intraperitoneally. The animals were sacrificed 24 h after the last treatment; the liver was taken for macroscopic, histopathological staining using hematoxylin–eosin and reverse transcription-PCR analysis sample. Results HFD significantly increased the expression of SREBP-1c mRNA; meanwhile, quercetin and repaired feed significantly reduced the expression of SREBP-1c mRNA in the liver. Quercetin at a dose of 50 mg/kg and 100 mg/kg also improved liver cells’ pathological profile in high-fat diet NAFLD. Conclusions The present study suggests that quercetin has an inhibitory effect on SREBP-1c expression and improved liver pathology in NAFLD mice.


2014 ◽  
Vol 10 (6) ◽  
pp. 2917-2923 ◽  
Author(s):  
XIANG WANG ◽  
QIAOHUA REN ◽  
TAO WU ◽  
YONG GUO ◽  
YONG LIANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document