scholarly journals Revisiting hypoxia therapies for tuberculosis

2019 ◽  
Vol 133 (12) ◽  
pp. 1271-1280 ◽  
Author(s):  
Stefan H. Oehlers

Abstract The spectre of the coming post-antibiotic age demands novel therapies for infectious diseases. Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the single deadliest infection throughout human history. M. tuberculosis has acquired antibiotic resistance at an alarming rate with some strains reported as being totally drug resistant. Host-directed therapies (HDTs) attempt to overcome the evolution of antibiotic resistance by targeting relatively immutable host processes. Here, I hypothesise the induction of hypoxia via anti-angiogenic therapy will be an efficacious HDT against TB. I argue that anti-angiogenic therapy is a modernisation of industrial revolution era sanatoria treatment for TB, and present a view of the TB granuloma as a ‘bacterial tumour’ that can be treated with anti-angiogenic therapies to reduce bacterial burden and spare host immunopathology. I suggest two complementary modes of action, induction of bacterial dormancy and activation of host hypoxia-induced factor (HIF)-mediated immunity, and define the experimental tools necessary to test this hypothesis.

Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 714 ◽  
Author(s):  
Zheng Jiang ◽  
Junwei Wei ◽  
Yunxiang Liang ◽  
Nan Peng ◽  
Yingjun Li

Antibiotic resistance is becoming the biggest threat to global health. At the same time, phage therapy is witnessing a return of interest. The therapeutic use of bacteriophages that infect and kill bacteria is a suitable strategy to combat antibiotic resistance. Furthermore, bacteriophages are increasingly used in combination with standard antibiotics against drug-resistant pathogens. Interestingly, we found that the engineered mycobacteriophage phAE159 and natural phage D29 cannot infect the Mycobacterium tuberculosis in the presence of kanamycin, hygromycin or streptomycin, but the phage infection was not affected in the presence of spectinomycin. Based on a series of studies and structural analysis of the above four aminoglycoside antibiotics, it could be speculated that the amino sugar group of aminoglycoside might selectively inhibit mycobacteriophage DNA replication. Our discovery that broad-spectrum antibiotics inhibit phage infection is of great value. This study will provide guidance for people to combine phage and antibiotics to treat M. tuberculosis.


2013 ◽  
Vol 57 (4) ◽  
pp. 1857-1865 ◽  
Author(s):  
Analise Z. Reeves ◽  
Patricia J. Campbell ◽  
Razvan Sultana ◽  
Seidu Malik ◽  
Megan Murray ◽  
...  

ABSTRACTSince the discovery of streptomycin's bactericidal activity againstMycobacterium tuberculosis, aminoglycosides have been utilized to treat tuberculosis (TB). Today, the aminoglycosides kanamycin and amikacin are used to treat multidrug-resistant (MDR) TB, and resistance to any of the second-line injectable antibiotics, including kanamycin, amikacin, or capreomycin, is a defining characteristic of extensively drug-resistant (XDR) TB. Resistance to kanamycin and streptomycin is thought to be due to the acquisition of unlinked chromosomal mutations. However, we identified eight independent mutations in the 5′ untranslated region of the transcriptional activatorwhiB7that confer low-level resistance to both aminoglycosides. The mutations lead to 23- to 145-fold increases inwhiB7transcripts and subsequent increased expression of botheis(Rv2416c) andtap(Rv1258c). Increased expression ofeisconfers kanamycin resistance in these mutants, while increased expression oftap, which encodes an efflux pump, is a previously uncharacterized mechanism of low-level streptomycin resistance. Additionally, high-level resistance to streptomycin arose at a much higher frequency inwhiB7mutants than in a wild-type (WT) strain. AlthoughwhiB7is typically associated with intrinsic antibiotic resistance inM. tuberculosis, these data suggest that mutations in an uncharacterized regulatory region ofwhiB7contribute to cross-resistance against clinically used second-line antibiotics. As drug resistance continues to develop and spread, understanding the mechanisms and molecular basis of antibiotic resistance is critical for the development of rapid molecular tests to diagnose drug-resistant TB strains and ultimately for designing regimens to treat drug-resistant cases of TB.


2016 ◽  
Author(s):  
◽  
Alveera Singh

Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB) has infected approximately one-third of the world population, with 9.6 million TB cases in 2014. The emergence of multi-drug resistant (MDR) and extensively-drug resistant (XDR) strains of MTB has further complicated the problem of TB control. It is now imperative that novel antimycobacterial compounds are discovered in order to treat infections and reduce the duration of current TB therapy courses. For centuries, medicinal plants have been used globally worldwide for the treatment and prevention of various ailments. This occurs particularly in developing countries where infectious diseases are endemic and modern health facilities and services are inadequate. In recent years, the use and search for plant drug derivatives have been fast-tracked. Ethnopharmacologists, botanists, microbiologists, and natural product chemists are trying to discover phytochemicals which could be developed for the treatment of infectious diseases, especially TB. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimycobacterial activity. In the search for new lead compounds, nine medicinal plant species, Buddleja saligna, Capparis tomentosa, Carpobrotus dimidiatus, Dichrostachys cinerea, Ekerbergia capensis, Ficus Sur, Gunnera perpensa, Leonotis leonurus and Tetradenia riparia were collected in Kwa-Zulu Natal (KZN) following report of their therapeutic use in traditional medicine to treat symptoms and infections related to TB. They were tested in vitro for their activity against Mycobacterium smegmatis, Mycobacterium tuberculosis H37Rv (ATCC 25177) and three well-characterized clinical isolates of MDR-TB and XDR-TB using the agar incorporation method. The minimum inhibitory concentration of the active plant extracts was determined using the broth microdilution method. Our findings show that five of the nine plants screened have antimycobacterial activity with concentrations ranging from 125 µg/ml to 1000 µg/ml. The aqueous extracts of G. perpensa and T. riparia; and the methanolic extracts of B. saligna, C. tomentosa, and C. dimidiatus possessed significant activity against M. smegmatis, M. tuberculosis H37Rv (ATCC 25177) and the three well-characterized clinical isolates of MDR-TB and XDR-TB. The cytotoxic effect of the active plant extracts was evaluated against the mouse BALB/C monocyte-macrophage (J774.2) and peripheral blood mononuclear cells (PBMCs). The toxic effects of the active plant extracts were evaluated using the brine shrimp lethality assay. Except for a high concentration of G. perpensa none of the other plants which possessed antimycobacterial activity showed any toxic or cytotoxic activity. The active plant extracts were thereafter assessed to determine if they had any effect on the survival or death of mycobacterial species, M. smegmatis, bound within the macrophage (J774.2) cell line at a concentration of 100 µg/ml. B. saligna had inactivated most of the phagocytosed bacilli after 24 hours of treatment therefore, it has a bactericidal effect on the mycobacteria located within the mouse macrophage. A phytochemical investigation of the leaves of B. saligna led to the isolation of two isomeric pentacyclic triterpene compounds namely Oleanolic Acid (OA) and Ursolic Acid (UA) using thin layer chromatography followed by silica gel column chromatography. The structures of these compounds were fully characterized by detailed NMR investigations, which included 1H and 13C NMR. Ursolic acid was isolated from this plant for the first time. Two-dimensional (2D) and three-dimensional (3D) quantitative structure-activity relationship (QSAR) studies were carried out to provide insight on the interaction of the compounds with the enzyme. Molecular docking studies predicted the free binding energy of the triterpenes inside the steroid binding pocket of Mycobacterium tuberculosis fadA5 thiolase compared to a reported inhibitor. Thus, their ability to inhibit the growth of Mycobacterium tuberculosis was predicted and was confirmed to possess significant antimycobacterial activity when tested against M. smegmatis, M. tuberculosis H37Rv (ATCC 25177), clinical isolates of MDR-TB and XDR-TB using the Microplate Alamar Blue Plate (MABA) assay. The present study has scientifically validated the traditional use of medicinal plant B. saligna.


2019 ◽  
Vol 68 (Supplement_2) ◽  
pp. S165-S170 ◽  
Author(s):  
Zoe A Dyson ◽  
Elizabeth J Klemm ◽  
Sophie Palmer ◽  
Gordon Dougan

AbstractMultiple drug (antibiotic) resistance (MDR) has become a major threat to the treatment of typhoid and other infectious diseases. Since the 1970s, this threat has increased in Salmonella enterica serovar Typhi, driven in part by the emergence of successful genetic clades, such as haplotype H58, associated with the MDR phenotype. H58 S. Typhi can express multiple antibiotic resistance determinants while retaining the ability to efficiently transmit and persist within the human population. The recent identification of extensively drug resistant S. Typhi only highlights the dangers of ignoring this threat. Here we discuss the evolution of the S. Typhi MDR phenotype and consider options for management.


2020 ◽  
Author(s):  
Zheng Jiang ◽  
Junwei Wei ◽  
Nan Peng ◽  
Yingjun Li

AbstractAntibiotic resistance is becoming the biggest current threat to global health. At the same time, phage therapy is witnessing a return of interest. The therapeutic use of bacteriophages, that infect and kill bacteria, is well suited to be a good strategy to combat antibiotic resistance. Furthermore, bacteriophages are increasingly used in combination with standard antibiotics against the drug-resistant pathogens. Interestingly, we found that the engineered mycobacteriophage phAE159 and natural phage D29 can not infect the Mycobacterium tuberculosis in the presence of kanamycin, hygromycin or streptomycin, but there is no effect on the phage infection in the presence of spectinomycin. Based on a series of studies and structural analysis of the above four aminoglycoside antibiotics, we can speculate as to the mechanism by which amino sugar group of aminoglycoside was able to selectively inhibit mycobacteriophage DNA replication. This is a rare discovery that broad-spectrum antibiotics inhibit phage infection. We envisioned that this study will provide guidance for people to combine phage and antibiotics to treat M. tuberculosis.


Author(s):  
Rudy Antoine ◽  
Cyril Gaudin ◽  
Ruben C. Hartkoorn

To help control the spread of drug-resistant tuberculosis and to guide treatment choices, it is important that rapid and accurate molecular diagnostic tools are used. Current molecular diagnostic tools detect the most common antibiotic-resistance-conferring mutations in the form of single nucleotide changes, small deletions, or insertions.


Sign in / Sign up

Export Citation Format

Share Document