scholarly journals Antibiotic Resistance and Typhoid

2019 ◽  
Vol 68 (Supplement_2) ◽  
pp. S165-S170 ◽  
Author(s):  
Zoe A Dyson ◽  
Elizabeth J Klemm ◽  
Sophie Palmer ◽  
Gordon Dougan

AbstractMultiple drug (antibiotic) resistance (MDR) has become a major threat to the treatment of typhoid and other infectious diseases. Since the 1970s, this threat has increased in Salmonella enterica serovar Typhi, driven in part by the emergence of successful genetic clades, such as haplotype H58, associated with the MDR phenotype. H58 S. Typhi can express multiple antibiotic resistance determinants while retaining the ability to efficiently transmit and persist within the human population. The recent identification of extensively drug resistant S. Typhi only highlights the dangers of ignoring this threat. Here we discuss the evolution of the S. Typhi MDR phenotype and consider options for management.

2020 ◽  
Vol 7 (5) ◽  
Author(s):  
Michael Dagher ◽  
Felicia Ruffin ◽  
Steven Marshall ◽  
Magdalena Taracila ◽  
Robert A Bonomo ◽  
...  

Abstract Cefiderocol is a novel catechol siderophore cephalosporin antibiotic developed to treat resistant gram-negative infections. We describe its successful use as rescue therapy, combined with surgical debridement, to treat a patient with osteomyelitis due to extensively drug-resistant Acinetobacter baumannii. Bacterial whole-genome sequencing identified the strain and antibiotic resistance determinants.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 675
Author(s):  
Kyriaki Xanthopoulou ◽  
Alessandra Carattoli ◽  
Julia Wille ◽  
Lena M. Biehl ◽  
Holger Rohde ◽  
...  

Mobile genetic elements (MGEs), especially multidrug-resistance plasmids, are major vehicles for the dissemination of antimicrobial resistance determinants. Herein, we analyse the MGEs in three extensively drug-resistant (XDR) Klebsiella pneumoniae isolates from Germany. Whole genome sequencing (WGS) is performed using Illumina and MinION platforms followed by core-genome multi-locus sequence typing (MLST). The plasmid content is analysed by conjugation, S1-pulsed-field gel electrophoresis (S1-PFGE) and Southern blot experiments. The K. pneumoniae isolates belong to the international high-risk clone ST147 and form a cluster of closely related isolates. They harbour the blaOXA-181 carbapenemase on a ColKP3 plasmid, and 12 antibiotic resistance determinants on an multidrug-resistant (MDR) IncR plasmid with a recombinogenic nature and encoding a large number of insertion elements. The IncR plasmids within the three isolates share a high degree of homology, but present also genetic variations, such as inversion or deletion of genetic regions in close proximity to MGEs. In addition, six plasmids not harbouring any antibiotic resistance determinants are present in each isolate. Our study indicates that genetic variations can be observed within a cluster of closely related isolates, due to the dynamic nature of MGEs. The mobilome of the K. pneumoniae isolates combined with the emergence of the XDR ST147 high-risk clone have the potential to become a major challenge for global healthcare.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Bhavani Manivannan ◽  
Niranjana Mahalingam ◽  
Sudhir Jadhao ◽  
Amrita Mishra ◽  
Pravin Nilawe ◽  
...  

We present the draft genome assembly of an extensively drug-resistant (XDR) Pseudomonas aeruginosa strain isolated from a patient with a history of genito urinary tuberculosis. The draft genome is 7,022,546 bp with a G+C content of 65.48%. It carries 7 phage genomes, genes for quorum sensing, biofilm formation, virulence, and antibiotic resistance.


2010 ◽  
Vol 4 (6) ◽  
pp. 901-911 ◽  
Author(s):  
Nourkhoda Sadeghifard ◽  
Reza Ranjbar ◽  
Javad Zaeimi ◽  
Mohammad Yousef Alikhani ◽  
Sobhan Ghafouryan ◽  
...  

Abstract Background: Multiple-drug resistant Acinetobacter have widely spread in the last decades imposing a serious nosocomial source of infection. Nevertheless, little knowledge was gaimed on tracing the development of antibiotic resistance in Acinetobacter species. Objectives: Explore Acinetobacter spp. via antimicrobial susceptibility, plasmid profiles, and random amplified polymorphism DNA polymerase chain reaction (RAPD-PCR) typing. Methods: One hundred twelve Acinetobacter isolates (including 66 A. baumannii and 46 non-Acinetobacter baumannii strains) were obtained from three university hospitals. The source of infection of these isolates included blood, urine, wound, and respiratory tract. Their susceptibilities to 17 antibiotics were tested and then all Acinetobacter isolates were typed by plasmid analysis and RAPD-PCR method. Results: A. baumannii isolates revealed nine different patterns of antibiotic resistance. Of those, non- A. baumannii, were associated with plasmid and RAPD-PCR typings (p <0.05). A. baumannii was more resistant to multiple antibiotics than non-A. baumannii (p <0.05). Seven different plasmid profiles were observed among 112 Acinetobacter isolates. Plasmids were found in 107 (95.5%) of the 112 isolates. Unlike in RAPD-PCR typing, there was no difference between the type of Acinetobacter, A. or non-A. baumannii strains and plasmid profiles (p >0.05). By RAPD-PCR, six profiles were found for each A. and non-A. baumannii strains. The pattern 6 was the most common pattern among the isolates. Both plasmid and RAPD-PCR typing showed no association between plasmid profiling and site of infection (p >0.05). Conclusion: There is a wide spread of multi-drug resistant Acinetobacter spp., particularly A. baumannii, in the Middle East region that can be traced efficiently by plasmid and genotyping typing of Acinetobacter. More care should be taken for tracing the development of antimicrobial resistance of Acinetobacter using precise molecular typing techniques.


Author(s):  
Umar Saeed ◽  
◽  
Sara Rizwan Uppal ◽  
Zahra Zahid Piracha ◽  
Rizwan Uppal ◽  
...  

There have been several outbreaks of antimicrobial resistant (AMR) strains of Salmonella enterica serovar Typhi that cause extensively drug resistant (XDR) typhoid fever in Pakistan. It has been observed that many clinicians use serological diagnostic tests such as Widal agglutination, and TyphiDOT that detects IgM and IgG antibodies against the outer membrane protein of S. Typhi. However, it has been confirmed by many scientists that these test may lead to misdiagnosis against XDR S. Typhi. Due to lack of implementation strategies health authorities are unable to hamper Widal or TyphiDOT tests which are still practiced in many rural and urban areas.


2019 ◽  
Vol 133 (12) ◽  
pp. 1271-1280 ◽  
Author(s):  
Stefan H. Oehlers

Abstract The spectre of the coming post-antibiotic age demands novel therapies for infectious diseases. Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the single deadliest infection throughout human history. M. tuberculosis has acquired antibiotic resistance at an alarming rate with some strains reported as being totally drug resistant. Host-directed therapies (HDTs) attempt to overcome the evolution of antibiotic resistance by targeting relatively immutable host processes. Here, I hypothesise the induction of hypoxia via anti-angiogenic therapy will be an efficacious HDT against TB. I argue that anti-angiogenic therapy is a modernisation of industrial revolution era sanatoria treatment for TB, and present a view of the TB granuloma as a ‘bacterial tumour’ that can be treated with anti-angiogenic therapies to reduce bacterial burden and spare host immunopathology. I suggest two complementary modes of action, induction of bacterial dormancy and activation of host hypoxia-induced factor (HIF)-mediated immunity, and define the experimental tools necessary to test this hypothesis.


2020 ◽  
Vol 9 (31) ◽  
Author(s):  
Samantha Hao ◽  
Tess Veuthey ◽  
Saharai Caldera ◽  
Paula Hayakawa Serpa ◽  
Barbara Haller ◽  
...  

ABSTRACT We report a draft genome sequence of extensively drug-resistant (XDR) Salmonella enterica serotype Typhi isolated from a returned traveler from Pakistan who developed sepsis. Whole-genome sequencing revealed relatedness to a previously reported outbreak in Pakistan and identified the blaCTX-M-15 and qnrS resistance genes.


Sign in / Sign up

Export Citation Format

Share Document