Origins of mtDNA mutations in ageing

2017 ◽  
Vol 61 (3) ◽  
pp. 325-337 ◽  
Author(s):  
Karolina Szczepanowska ◽  
Aleksandra Trifunovic

MtDNA mutations are one of the hallmarks of ageing and age-related diseases. It is well established that somatic point mutations accumulate in mtDNA of multiple organs and tissues with increasing age and heteroplasmy is universal in mammals. However, the origin of these mutations remains controversial. The long-lasting hypothesis stating that mtDNA mutations emanate from oxidative damage via a self-perpetuating mechanism has been extensively challenged in recent years. Contrary to this initial ascertainment, mtDNA appears to be well protected from action of reactive oxygen species (ROS) through robust protein coating and endomitochondrial microcompartmentalization. Extensive development of scrupulous high-throughput DNA sequencing methods suggests that an imperfect replication process, rather than oxidative lesions are the main sources of mtDNA point mutations, indicating that mtDNA polymerase γ (POLG) might be responsible for the majority of mtDNA mutagenic events. Here, we summarize the recent knowledge in prevention and defence of mtDNA oxidative lesions and discuss the plausible mechanisms of mtDNA point mutation generation and fixation.

Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 392 ◽  
Author(s):  
Hahn ◽  
Zuryn

Mitochondria are critical for the energetic demands of virtually every cellular process within nucleated eukaryotic cells. They harbour multiple copies of their own genome (mtDNA), as well as the protein-synthesing systems required for the translation of vital subunits of the oxidative phosphorylation machinery used to generate adenosine triphosphate (ATP). Molecular lesions to the mtDNA cause severe metabolic diseases and have been proposed to contribute to the progressive nature of common age-related diseases such as cancer, cardiomyopathy, diabetes, and neurodegenerative disorders. As a consequence of playing a central role in cellular energy metabolism, mitochondria produce reactive oxygen species (ROS) as a by-product of respiration. Here we review the evidence that mutations in the mtDNA exacerbate ROS production, contributing to disease.


2016 ◽  
pp. S519-S531 ◽  
Author(s):  
M. CEDIKOVA ◽  
P. PITULE ◽  
M. KRIPNEROVA ◽  
M. MARKOVA ◽  
J. KUNCOVA

Aging is a multifactorial process influenced by genetic factors, nutrition, and lifestyle. According to mitochondrial theory of aging, mitochondrial dysfunction is widely considered a major contributor to age-related processes. Mitochondria are both the main source and targets of detrimental reactions initiated in association with age-dependent deterioration of the cellular functions. Reactions leading to increased reactive oxygen species generation, mtDNA mutations, and oxidation of mitochondrial proteins result in subsequent induction of apoptotic events, impaired oxidative phosphorylation capacity, mitochondrial dynamics, biogenesis and autophagy. This review summarizes the major changes of mitochondria related to aging, with emphasis on mitochondrial DNA mutations, the role of the reactive oxygen species, and structural and functional changes of mitochondria.


Author(s):  
Ikue Hayashi ◽  
Yukari Morishita ◽  
Kazue Imai ◽  
Masakazu Nakamura ◽  
Kei Nakachi ◽  
...  

2016 ◽  
Vol 371 (1700) ◽  
pp. 20150434 ◽  
Author(s):  
Michael J. Berridge

Vitamin D is a hormone that maintains healthy cells. It functions by regulating the low resting levels of cell signalling components such as Ca 2+ and reactive oxygen species (ROS). Its role in maintaining phenotypic stability of these signalling pathways depends on the ability of vitamin D to control the expression of those components that act to reduce the levels of both Ca 2+ and ROS. This regulatory role of vitamin D is supported by both Klotho and Nrf2. A decline in the vitamin D/Klotho/Nrf2 regulatory network may enhance the ageing process, and this is well illustrated by the age-related decline in cognition in rats that can be reversed by administering vitamin D. A deficiency in vitamin D has also been linked to two of the major diseases in man: heart disease and Alzheimer's disease (AD). In cardiac cells, this deficiency alters the Ca 2+ transients to activate the gene transcriptional events leading to cardiac hypertrophy and the failing heart. In the case of AD, it is argued that vitamin D deficiency results in the Ca 2+ landscape that initiates amyloid formation, which then elevates the resting level of Ca 2+ to drive the memory loss that progresses to neuronal cell death and dementia. This article is part of the themed issue ‘Evolution brings Ca 2+ and ATP together to control life and death’.


Sign in / Sign up

Export Citation Format

Share Document