Clinical syndromes associated with mtDNA mutations: where we stand after 30 years

2018 ◽  
Vol 62 (3) ◽  
pp. 235-254 ◽  
Author(s):  
Valerio Carelli ◽  
Chiara La Morgia

The landmark year 1988 can be considered as the birthdate of mitochondrial medicine, when the first pathogenic mutations affecting mtDNA were associated with human diseases. Three decades later, the field still expands and we are not ‘scraping the bottom of the barrel’ yet. Despite the tremendous progress in terms of molecular characterization and genotype/phenotype correlations, for the vast majority of cases we still lack a deep understanding of the pathogenesis, good models to study, and effective therapeutic options. However, recent technological advances including somatic cell reprogramming to induced pluripotent stem cells (iPSCs), organoid technology, and tailored endonucleases provide unprecedented opportunities to fill these gaps, casting hope to soon cure the major primary mitochondrial phenotypes reviewed here. This group of rare diseases represents a key model for tackling the pathogenic mechanisms involving mitochondrial biology relevant to much more common disorders that affect our currently ageing population, such as diabetes and metabolic syndrome, neurodegenerative and inflammatory disorders, and cancer.

Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1848
Author(s):  
Mirae Kim ◽  
Seon-Ung Hwang ◽  
Junchul David Yoon ◽  
Yeon Woo Jeong ◽  
Eunhye Kim ◽  
...  

Canine induced pluripotent stem cells (ciPSCs) can provide great potential for regenerative veterinary medicine. Several reports have described the generation of canine somatic cell-derived iPSCs; however, none have described the canine somatic cell reprogramming using a non-integrating and self-replicating RNA transfection method. The purpose of this study was to investigate the optimal strategy using this approach and characterize the transition stage of ciPSCs. In this study, fibroblasts obtained from a 13-year-old dog were reprogrammed using a non-integrating Venezuelan equine encephalitis (VEE) RNA virus replicon, which has four reprogramming factors (collectively referred to as T7-VEE-OKS-iG and comprised of hOct4, hKlf4, hSox2, and hGlis1) and co-transfected with the T7-VEE-OKS-iG RNA and B18R mRNA for 4 h. One day after the final transfection, the cells were selected with puromycin (0.5 µg/mL) until day 10. After about 25 days, putative ciPSC colonies were identified showing TRA-1-60 expression and alkaline phosphatase activity. To determine the optimal culture conditions, the basic fibroblast growth factor in the culture medium was replaced with a modified medium supplemented with murine leukemia inhibitory factor (mLIF) and two kinase inhibitors (2i), PD0325901(MEK1/2 inhibitor) and CHIR99021 (GSK3β inhibitor). The derived colonies showed resemblance to naïve iPSCs in their morphology (dome-shaped) and are dependent on mLIF and 2i condition to maintain an undifferentiated phenotype. The expression of endogenous pluripotency markers such as Oct4, Nanog, and Rex1 transcripts were confirmed, suggesting that induced ciPSCs were in the late intermediate stage of reprogramming. In conclusion, the non-integrating and self-replicating VEE RNA replicon system can potentially make a great contribution to the generation of clinically applicable ciPSCs, and the findings of this study suggest a new method to utilize the VEE RNA approach for canine somatic cell reprogramming.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Wei ◽  
Daniel J. Gaffney ◽  
Patrick F. Chinnery

AbstractIndividual induced pluripotent stem cells (iPSCs) show considerable phenotypic heterogeneity, but the reasons for this are not fully understood. Comprehensively analysing the mitochondrial genome (mtDNA) in 146 iPSC and fibroblast lines from 151 donors, we show that most age-related fibroblast mtDNA mutations are lost during reprogramming. However, iPSC-specific mutations are seen in 76.6% (108/141) of iPSC lines at a mutation rate of 8.62 × 10−5/base pair. The mutations observed in iPSC lines affect a higher proportion of mtDNA molecules, favouring non-synonymous protein-coding and tRNA variants, including known disease-causing mutations. Analysing 11,538 single cells shows stable heteroplasmy in sub-clones derived from the original donor during differentiation, with mtDNA variants influencing the expression of key genes involved in mitochondrial metabolism and epidermal cell differentiation. Thus, the dynamic mtDNA landscape contributes to the heterogeneity of human iPSCs and should be considered when using reprogrammed cells experimentally or as a therapy.


Cell Research ◽  
2011 ◽  
Vol 22 (1) ◽  
pp. 168-177 ◽  
Author(s):  
Athanasia D Panopoulos ◽  
Oscar Yanes ◽  
Sergio Ruiz ◽  
Yasuyuki S Kida ◽  
Dinh Diep ◽  
...  

2021 ◽  
Author(s):  
Xu Jinhong ◽  
Fang Shi ◽  
Wang Naweng ◽  
Li Bo ◽  
Huang Yongheng ◽  
...  

Abstract Background: Human induced pluripotent stem cells (hiPSCs) hold great potential in disease modeling, drug screening and cell therapy. However, efficiency and costs of hiPSCs preparation still need to be improved.Methods: We screened the compounds that target signaling pathways, epigenetic modifications or metabolic-process regulation to replace the growth factors. After small molecules treatment, TRA-1-60 staining was performed to quantify the efficiency of somatic cell reprogramming. Next, small molecule cocktail induced ESCs or iPSCs were examined with pluripotent markers expression. Finally, Genome-wide gene expression profile was then analyzed by RNA-seq to illustrate the mechanism of human somatic cell reprogramming. Result: Here, we found that a dual-specificity tyrosine phosphorylation-regulated kinase inhibitor ID-8 robustly enhanced human somatic cell reprogramming by upregulation of PDK4 and activation of glycolysis. Furthermore, we identified a novel growth-factor-free hiPSC generation system using small molecules ID-8/Kartogenin (IK). Finally, we developed IK medium combined with Low-dose bFGF to support the long-term expansion of human pluripotent stem cells. IK-iPSCs showed pluripotency and normal karyotype. Conclusions: Our studies may provide a novel growth-factor-free culture system to facilitate the generation of hiPSCs for multiple application in regenerative medicine.


Cell Research ◽  
2011 ◽  
Vol 21 (5) ◽  
pp. 849-853 ◽  
Author(s):  
Jiangtao Ren ◽  
Yongjun Pak ◽  
Lixiazi He ◽  
Lei Qian ◽  
Yijun Gu ◽  
...  

Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 253 ◽  
Author(s):  
Lubos Danisovic ◽  
Martina Culenova ◽  
Maria Csobonyeiova

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder, caused by mutation of the DMD gene which encodes the protein dystrophin. This dystrophin defect leads to the progressive degeneration of skeletal and cardiac muscles. Currently, there is no effective therapy for this disorder. However, the technology of cell reprogramming, with subsequent controlled differentiation to skeletal muscle cells or cardiomyocytes, may provide a unique tool for the study, modeling, and treatment of Duchenne muscular dystrophy. In the present review, we describe current methods of induced pluripotent stem cell generation and discuss their implications for the study, modeling, and development of cell-based therapies for Duchenne muscular dystrophy.


Acta Naturae ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 92-97
Author(s):  
V. V. Sherstyuk ◽  
G. I. Davletshina ◽  
Y. V. Vyatkin ◽  
D. N. Shtokalo ◽  
V. V. Vlasov ◽  
...  

Reprogramming of somatic cells to a pluripotent state is a complex, multistage process that is regulated by many factors. Among these factors, non-coding RNAs and microRNAs (miRNAs) have been intensively studied in recent years. MiRNAs play an important role in many processes, particularly in cell reprogramming. In this study, we investigated the reprogramming of rat fibroblasts with a deleted locus encoding a cluster comprising 14 miRNAs (from miR-743a to miR-465). The deletion of this locus was demonstrated to decrease significantly the efficiency of the cell reprogramming. In addition, the cells produced by the reprogramming differed from rat embryonic and induced pluripotent stem cells, which was an indication that reprogramming in these cells had not been completed. We suggest that this miRNA cluster or some of its members are involved in regulating the reprogramming of rat cells to a pluripotent state.


Sign in / Sign up

Export Citation Format

Share Document