scholarly journals Retrograde apoptotic signaling by the p75 neurotrophin receptor

2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Amrita Pathak ◽  
Bruce D. Carter

Neurotrophins are target-derived factors necessary for mammalian nervous system development and maintenance. They are typically produced by neuronal target tissues and interact with their receptors at axonal endings. Therefore, locally generated neurotrophin signals must be conveyed from the axon back to the cell soma. Retrograde survival signaling by neurotrophin binding to Trk receptors has been extensively studied. However, neurotrophins also bind to the p75 receptor, which can induce apoptosis in a variety of contexts. Selective activation of p75 at distal axon ends has been shown to generate a retrograde apoptotic signal, although the mechanisms involved are poorly understood. The present review summarizes the available evidence for retrograde proapoptotic signaling in general and the role of the p75 receptor in particular, with discussion of unanswered questions in the field. In-depth knowledge of the mechanisms of retrograde apoptotic signaling is essential for understanding the etiology of neurodegeneration in many diseases and injuries.

2001 ◽  
Vol 155 (7) ◽  
pp. 1275-1286 ◽  
Author(s):  
Marta Majdan ◽  
Gregory S. Walsh ◽  
Raquel Aloyz ◽  
Freda D. Miller

Developmental sympathetic neuron death is determined by functional interactions between the TrkA/NGF receptor and the p75 neurotrophin receptor (p75NTR). A key question is whether p75NTR promotes apoptosis by directly inhibiting or modulating TrkA activity, or by stimulating cell death independently of TrkA. Here we provide evidence for the latter model. Specifically, experiments presented here demonstrate that the presence or absence of p75NTR does not alter Trk activity or NGF- and NT-3–mediated downstream survival signaling in primary neurons. Crosses of p75NTR−/− and TrkA−/− mice indicate that the coincident absence of p75NTR substantially rescues TrkA−/− sympathetic neurons from developmental death in vivo. Thus, p75NTR induces death regardless of the presence or absence of TrkA expression. These data therefore support a model where developing sympathetic neurons are “destined to die” by an ongoing p75NTR-mediated apoptotic signal, and one of the major ways that TrkA promotes neuronal survival is by silencing this ongoing death signal.


Development ◽  
2001 ◽  
Vol 128 (5) ◽  
pp. 711-722 ◽  
Author(s):  
T.E. Rusten ◽  
R. Cantera ◽  
J. Urban ◽  
G. Technau ◽  
F.C. Kafatos ◽  
...  

Genes of the spalt family encode nuclear zinc finger proteins. In Drosophila melanogaster, they are necessary for the establishment of head/trunk identity, correct tracheal migration and patterning of the wing imaginal disc. Spalt proteins display a predominant pattern of expression in the nervous system, not only in Drosophila but also in species of fish, mouse, frog and human, suggesting an evolutionarily conserved role for these proteins in nervous system development. Here we show that Spalt works as a cell fate switch between two EGFR-induced cell types, the oenocytes and the precursors of the pentascolopodial organ in the embryonic peripheral nervous system. We show that removal of spalt increases the number of scolopodia, as a result of extra secondary recruitment of precursor cells at the expense of the oenocytes. In addition, the absence of spalt causes defects in the normal migration of the pentascolopodial organ. The dual function of spalt in the development of this organ, recruitment of precursors and migration, is reminiscent of its role in tracheal formation and of the role of a spalt homologue, sem-4, in the Caenorhabditis elegans nervous system.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Madison Gonsior ◽  
Afshan Ismat

Abstract Neurons and glial cells coordinate with each other in many different aspects of nervous system development. Both types of cells are receiving multiple guidance cues to guide the neurons and glial cells to their proper final position. The lateral chordotonal organs (lch5) of the Drosophila peripheral nervous system (PNS) are composed of five sensory neurons surrounded by four different glial cells, scolopale cells, cap cells, attachment cells and ligament cells. During embryogenesis, the lch5 neurons go through a rotation and ventral migration to reach their final position in the lateral region of the abdomen. We show here that the extracellular ligand sli is required for the proper ventral migration and morphology of the lch5 neurons. We further show that mutations in the Sli receptors Robo and Robo2 also display similar defects as loss of sli, suggesting a role for Slit-Robo signaling in lch5 migration and positioning. Additionally, we demonstrate that the scolopale, cap and attachment cells follow the mis-migrated lch5 neurons in sli mutants, while the ventral stretching of the ligament cells seems to be independent of the lch5 neurons. This study sheds light on the role of Slit-Robo signaling in sensory neuron development.


2008 ◽  
Vol 295 (6) ◽  
pp. F1778-F1789 ◽  
Author(s):  
Mary Beth Klinger ◽  
Margaret A. Vizzard

Previous studies demonstrated changes in urinary bladder neurotrophin content and upregulation of neurotrophin receptors, TrkA and the p75 neurotrophin receptor (p75NTR), in micturition reflex pathways after cyclophosphamide (CYP)-induced cystitis. p75NTR can bind nerve growth factor (NGF) and modulate NGF-TrkA binding and signaling. We examined p75NTR expression and the role of p75NTR in the micturition reflex in control and CYP-treated rats. p75NTR Immunoreactivity was present throughout the urinary bladder. CYP-induced cystitis (4 h, 48 h, chronic) increased ( P ≤ 0.05) p75NTR expression in whole urinary bladder as shown by Western blotting. The role of p75NTR in bladder function in control and CYP-treated rats was determined using conscious cystometry and immunoneutralization or PD90780, a compound known to specifically block NGF binding to p75NTR. An anti-p75NTR monoclonal antibody or PD90780 was infused intravesically and cystometric parameters were evaluated. Both methods of p75NTR blockade significantly ( P ≤ 0.05) decreased the intercontraction interval and void volume in control and CYP-treated rats. Intravesical infusion of PD90780 also significantly ( P ≤ 0.001) increased intravesical pressure and increased the number of nonvoiding contractions during the filling phase. Control intravesical infusions of isotype-matched IgG and vehicle were without effect. Intravesical instillation of PD90780 significantly ( P ≤ 0.01) reduced the volume threshold to elicit a micturition contraction in control rats (no inflammation) and CYP-treated in a closed urinary bladder system. These studies demonstrate 1) ubiquitous p75NTR expression in urinary bladder and increased expression with CYP-induced cystitis and 2) p75NTR blockade at the level of the urinary bladder produces bladder hyperreflexia in control and CYP-treated rats. The overall activity of the urinary bladder reflects the balance of NGF-p75NTR and NGF-TrkA signaling.


Sign in / Sign up

Export Citation Format

Share Document