The Role of the Prion Protein in the Molecular Basis for Synaptic Plasticity and Nervous System Development

2007 ◽  
Vol 34 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Sandra E. Encalada ◽  
Kenneth L. Moya ◽  
Sylvain Lehmann ◽  
Ralph Zahn
2021 ◽  
Vol 15 ◽  
Author(s):  
Dilara Kement ◽  
Rebecca Reumann ◽  
Katrin Schostak ◽  
Hannah Voß ◽  
Sara Douceau ◽  
...  

Neuroserpin is a serine protease inhibitor that regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin is strongly expressed during nervous system development as well as during adulthood, when it is predominantly found in regions eliciting synaptic plasticity. In the hippocampus, neuroserpin regulates developmental neurogenesis, synaptic maturation and in adult mice it modulates synaptic plasticity and controls cognitive and social behavior. High expression levels of neuroserpin in the neocortex starting from prenatal stage and persisting during adulthood suggest an important role for the serpin in the formation of this brain region and in the maintenance of cortical functions. In order to uncover neuroserpin function in the murine neocortex, in this work we performed a comprehensive investigation of its expression pattern during development and in the adulthood. Moreover, we assessed the role of neuroserpin in cortex formation by comparing cortical lamination and neuronal maturation between neuroserpin-deficient and control mice. Finally, we evaluated a possible regulatory role of neuroserpin at cortical synapses in neuroserpin-deficient mice. We observed that neuroserpin is expressed starting from the beginning of corticogenesis until adulthood throughout the neocortex in several classes of glutamatergic projection neurons and GABA-ergic interneurons. However, in the absence of neuroserpin we did not detect any alteration either in cortical layer formation, or in neuronal soma size and dendritic length. Furthermore, no significant quantitative changes were observed in the proteome of cortical synapses upon neuroserpin deficiency. We conclude that, although strongly expressed in the neocortex, absence of neuroserpin does not lead to gross developmental abnormalities, and does not perturb the composition of the cortical synaptic proteome.


Development ◽  
2001 ◽  
Vol 128 (5) ◽  
pp. 711-722 ◽  
Author(s):  
T.E. Rusten ◽  
R. Cantera ◽  
J. Urban ◽  
G. Technau ◽  
F.C. Kafatos ◽  
...  

Genes of the spalt family encode nuclear zinc finger proteins. In Drosophila melanogaster, they are necessary for the establishment of head/trunk identity, correct tracheal migration and patterning of the wing imaginal disc. Spalt proteins display a predominant pattern of expression in the nervous system, not only in Drosophila but also in species of fish, mouse, frog and human, suggesting an evolutionarily conserved role for these proteins in nervous system development. Here we show that Spalt works as a cell fate switch between two EGFR-induced cell types, the oenocytes and the precursors of the pentascolopodial organ in the embryonic peripheral nervous system. We show that removal of spalt increases the number of scolopodia, as a result of extra secondary recruitment of precursor cells at the expense of the oenocytes. In addition, the absence of spalt causes defects in the normal migration of the pentascolopodial organ. The dual function of spalt in the development of this organ, recruitment of precursors and migration, is reminiscent of its role in tracheal formation and of the role of a spalt homologue, sem-4, in the Caenorhabditis elegans nervous system.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Madison Gonsior ◽  
Afshan Ismat

Abstract Neurons and glial cells coordinate with each other in many different aspects of nervous system development. Both types of cells are receiving multiple guidance cues to guide the neurons and glial cells to their proper final position. The lateral chordotonal organs (lch5) of the Drosophila peripheral nervous system (PNS) are composed of five sensory neurons surrounded by four different glial cells, scolopale cells, cap cells, attachment cells and ligament cells. During embryogenesis, the lch5 neurons go through a rotation and ventral migration to reach their final position in the lateral region of the abdomen. We show here that the extracellular ligand sli is required for the proper ventral migration and morphology of the lch5 neurons. We further show that mutations in the Sli receptors Robo and Robo2 also display similar defects as loss of sli, suggesting a role for Slit-Robo signaling in lch5 migration and positioning. Additionally, we demonstrate that the scolopale, cap and attachment cells follow the mis-migrated lch5 neurons in sli mutants, while the ventral stretching of the ligament cells seems to be independent of the lch5 neurons. This study sheds light on the role of Slit-Robo signaling in sensory neuron development.


2015 ◽  
Vol 9s2 ◽  
pp. JEN.S25480 ◽  
Author(s):  
Ana Ana Maria ◽  
Moreno-Ramos Oscar Andréas ◽  
Neena B. Haider

The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.


Sign in / Sign up

Export Citation Format

Share Document