Speech Perception Benefits of FM and Infrared Devices to Children With Hearing Aids in a Typical Classroom

2004 ◽  
Vol 35 (2) ◽  
pp. 169-184 ◽  
Author(s):  
Karen L. Anderson ◽  
Howard Goldstein

Children typically learn in classroom environments that have background noise and reverberation that interfere with accurate speech perception. Amplification technology can enhance the speech perception of students who are hard of hearing.Purpose:This study used a single-subject alternating treatments design to compare the speech recognition abilities of children who are hard of hearing when they were using hearing aids with each of three frequency modulated (FM) or infrared devices.Method:Eight 9–12-year-olds with mild to severe hearing loss repeated Hearing in Noise Test (HINT) sentence lists under controlled conditions in a typical kindergarten classroom with a background noise level of +10 dB signal-to-noise (S/N) ratio and 1.1 s reverberation time. Participants listened to HINT lists using hearing aids alone and hearing aids in combination with three types of S/N-enhancing devices that are currently used in mainstream classrooms: (a) FM systems linked to personal hearing aids, (b) infrared sound field systems with speakers placed throughout the classroom, and (c) desktop personal sound field FM systems.Results:The infrared ceiling sound field system did not provide benefit beyond that provided by hearing aids alone. Desktop and personal FM systems in combination with personal hearing aids provided substantial improvements in speech recognition.Clinical Implications:This information can assist in making S/N-enhancing device decisions for students using hearing aids. In a reverberant and noisy classroom setting, classroom sound field devices are not beneficial to speech perception for students with hearing aids, whereas either personal FM or desktop sound field systems provide listening benefits.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Domenico Cuda ◽  
Sara Ghiselli ◽  
Alessandra Murri

Abstract Background Prevalence of hearing loss increases with age. Its estimated prevalence is 40–50 % in people over 75 years of age. Recent studies agree that declinein hearing threshold contribute to deterioration in sociality, sensitivity, cognition, and quality of life for elderly subjects. The aim of the study presented in this paper is to verify whether or not rehabilitation using first time applied Hearing Aids (HA) in a cohort of old people with hearing impairment improves both speech perception in a noisy environment over time and the overall health-related quality of life. Methods The monocentric, prospective, repeated measurements, single-subject, clinical observational study is to recruit 100 older adults, first-time HA recipients (≥ 65 years).The evaluation protocol is designed to analyze changes in specific measurement tools a year after the first HA usage in comparison with the evaluation before HA fitting. Evaluations will consist of multiparametric details collected through self-report questionnaires completed by the recipients and a series of commonly used audiometric measures and geriatric assessment tools. The primary indicator of changes in speech perception in noise to be used is the Italian version of Oldenburg Satz (OLSA) test whereas the indicator of changes in overall quality of life will be the Assessment of Quality of Life (AQoL) and Hearing Handicap Inventory for the Elderly (HHIE) questionnaires. The Montreal Cognitive Assessment (MoCA) will help in screening the cognitive state of the subjects. Discussion The protocol is designed to make use of measurement tools that have already been applied to the hearing-impaired population in order to compare the effects of HA rehabilitation in the older adults immediately before first HA usage (Pre) and after 1 year of experience (Post). This broad approach will lead to a greater understanding of how useful hearing influences the quality of life in older individuals, and therefore improves potentials for healthy aging. The data is to be analyzed by using an intrasubject endpoint comparison. Outcomes will be described and analyzed in detail. Trial registration This research was retrospectively registered underno. NCT04333043at ClinicalTrials.gov (http://www.clinicaltrials.gov/) on the 26 March 2020. This research has been registered with the Ethics Committee of the Area Vasta Emilia Nord under number 104, date of approval 17/07/2017.


2010 ◽  
Vol 21 (07) ◽  
pp. 441-451 ◽  
Author(s):  
René H. Gifford ◽  
Lawrence J. Revit

Background: Although cochlear implant patients are achieving increasingly higher levels of performance, speech perception in noise continues to be problematic. The newest generations of implant speech processors are equipped with preprocessing and/or external accessories that are purported to improve listening in noise. Most speech perception measures in the clinical setting, however, do not provide a close approximation to real-world listening environments. Purpose: To assess speech perception for adult cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE™) array in order to determine whether commercially available preprocessing strategies and/or external accessories yield improved sentence recognition in noise. Research Design: Single-subject, repeated-measures design with two groups of participants: Advanced Bionics and Cochlear Corporation recipients. Study Sample: Thirty-four subjects, ranging in age from 18 to 90 yr (mean 54.5 yr), participated in this prospective study. Fourteen subjects were Advanced Bionics recipients, and 20 subjects were Cochlear Corporation recipients. Intervention: Speech reception thresholds (SRTs) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the subjects' preferred listening programs as well as with the addition of either Beam™ preprocessing (Cochlear Corporation) or the T-Mic® accessory option (Advanced Bionics). Data Collection and Analysis: In Experiment 1, adaptive SRTs with the Hearing in Noise Test sentences were obtained for all 34 subjects. For Cochlear Corporation recipients, SRTs were obtained with their preferred everyday listening program as well as with the addition of Focus preprocessing. For Advanced Bionics recipients, SRTs were obtained with the integrated behind-the-ear (BTE) mic as well as with the T-Mic. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the preprocessing strategy or external accessory in reducing the SRT in noise. In addition, a standard t-test was run to evaluate effectiveness across manufacturer for improving the SRT in noise. In Experiment 2, 16 of the 20 Cochlear Corporation subjects were reassessed obtaining an SRT in noise using the manufacturer-suggested “Everyday,” “Noise,” and “Focus” preprocessing strategies. A repeated-measures ANOVA was employed to assess the effects of preprocessing. Results: The primary findings were (i) both Noise and Focus preprocessing strategies (Cochlear Corporation) significantly improved the SRT in noise as compared to Everyday preprocessing, (ii) the T-Mic accessory option (Advanced Bionics) significantly improved the SRT as compared to the BTE mic, and (iii) Focus preprocessing and the T-Mic resulted in similar degrees of improvement that were not found to be significantly different from one another. Conclusion: Options available in current cochlear implant sound processors are able to significantly improve speech understanding in a realistic, semidiffuse noise with both Cochlear Corporation and Advanced Bionics systems. For Cochlear Corporation recipients, Focus preprocessing yields the best speech-recognition performance in a complex listening environment; however, it is recommended that Noise preprocessing be used as the new default for everyday listening environments to avoid the need for switching programs throughout the day. For Advanced Bionics recipients, the T-Mic offers significantly improved performance in noise and is recommended for everyday use in all listening environments.


1987 ◽  
Vol 30 (3) ◽  
pp. 403-410 ◽  
Author(s):  
Larry E. Humes ◽  
Stephen Boney ◽  
Faith Loven

The present article further evaluates the accuracy of speech-recognition predictions made according to two forms of the Speech Transmission Index (STI) for normal-hearing listeners. The first portion of this article describes the application of the modified Speech Transmission Index (mSTI) to an extensive set of speech-recognition data. Performance of normal-hearing listeners on a nonsense-syllable recognition task in 216 conditions involving different speech levels, background noise levels, reverberation times and filter passbands was found to be monotonically related to the mSTI. The second portion of this article describes a retrospective and prospective analysis of an extended sound-field version of the STI, referred to here as STI x . This extended STI considers many of the variables relevant to sound-field speech recognition, some of which are not incorporated in the mSTI. These variables include: (a) reverberation time; (b) speech level; (e) noise level; (d) talker-to-listener distance; (e) directivity of the speech source; and (f) directivity of the listener (eg., monaural vs. binaural listening). For both the retrospective and prospective analyses, speech-recognition was found to vary monotonically with STI x .


2019 ◽  
Vol 28 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Jenna M. Browning ◽  
Emily Buss ◽  
Mary Flaherty ◽  
Tim Vallier ◽  
Lori J. Leibold

Purpose The purpose of this study was to evaluate speech-in-noise and speech-in-speech recognition associated with activation of a fully adaptive directional hearing aid algorithm in children with mild to severe bilateral sensory/neural hearing loss. Method Fourteen children (5–14 years old) who are hard of hearing participated in this study. Participants wore laboratory hearing aids. Open-set word recognition thresholds were measured adaptively for 2 hearing aid settings: (a) omnidirectional (OMNI) and (b) fully adaptive directionality. Each hearing aid setting was evaluated in 3 listening conditions. Fourteen children with normal hearing served as age-matched controls. Results Children who are hard of hearing required a more advantageous signal-to-noise ratio than children with normal hearing to achieve comparable performance in all 3 conditions. For children who are hard of hearing, the average improvement in signal-to-noise ratio when comparing fully adaptive directionality to OMNI was 4.0 dB in noise, regardless of target location. Children performed similarly with fully adaptive directionality and OMNI settings in the presence of the speech maskers. Conclusions Compared to OMNI, fully adaptive directionality improved speech recognition in steady noise for children who are hard of hearing, even when they were not facing the target source. This algorithm did not affect speech recognition when the background noise was speech. Although the use of hearing aids with fully adaptive directionality is not proposed as a substitute for remote microphone systems, it appears to offer several advantages over fixed directionality, because it does not depend on children facing the target talker and provides access to multiple talkers within the environment. Additional experiments are required to further evaluate children's performance under a variety of spatial configurations in the presence of both noise and speech maskers.


2019 ◽  
Vol 30 (04) ◽  
pp. 315-326 ◽  
Author(s):  
Jumana Harianawala ◽  
Jason Galster ◽  
Benjamin Hornsby

AbstractThe hearing in noise test (HINT) is the most popular adaptive test used to evaluate speech in noise performance, especially in context of hearing aid features. However, the number of conditions that can be tested on the HINT is limited by a small speech corpus. The American English Matrix test (AEMT) is a new alternative adaptive speech in noise test with a larger speech corpus. The study examined the relationships between the performance of hearing aid wearers on the HINT and the AEMT.To examine whether there was a difference in performance of hearing aid wearers on the HINT and the AEMT. A secondary purpose, given the AEMT’s steep performance-intensity function, was to determine whether the AEMT is more sensitive to changes in speech recognition resulting from directional (DIR) microphone processing in hearing aids.A repeated measures design was used in this study. Multiple measurements were made on each subject. Each measurement involved a different experimental condition.Ten adults with hearing loss participated in this study.All participants completed the AEMT and HINT, using adaptive and fixed test formats while wearing hearing aids. Speech recognition was assessed in two hearing aid microphone settings—omnidirectional and fixed DIR. All testing was conducted via sound field presentation. Performance on HINT and AEMT were systematically compared across all test conditions using a linear model with repeated measures.The results of this study revealed that adult hearing aid users perform differently on the HINT and AEMT, with adaptive AEMT testing yielding significantly better (more negative) thresholds than the HINT. Slopes of performance intensity functions obtained by testing at multiple fixed signal-to-noise ratios, revealed a somewhat steeper slope for the HINT compared with the AEMT. Despite this steeper slope, the benefit provided by DIR microphones was not significantly different between the two speech tests.The observation of similar DIR benefits of the HINT and AEMT suggests that the HINT and AEMT are equally sensitive to changes in speech recognition thresholds following intervention. Therefore, the decision to use the AEMT or the HINT will depend on the purpose of the study and/or the technology being investigated. Other test related factors such as available sentence corpus, learning effects and test time will also influence test selection.


2011 ◽  
Vol 22 (09) ◽  
pp. 623-632 ◽  
Author(s):  
René H. Gifford ◽  
Amy P. Olund ◽  
Melissa DeJong

Background: Current cochlear implant recipients are achieving increasingly higher levels of speech recognition; however, the presence of background noise continues to significantly degrade speech understanding for even the best performers. Newer generation Nucleus cochlear implant sound processors can be programmed with SmartSound strategies that have been shown to improve speech understanding in noise for adult cochlear implant recipients. The applicability of these strategies for use in children, however, is not fully understood nor widely accepted. Purpose: To assess speech perception for pediatric cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE™) array in order to determine whether Nucleus sound processor SmartSound strategies yield improved sentence recognition in noise for children who learn language through the implant. Research Design: Single subject, repeated measures design. Study Sample: Twenty-two experimental subjects with cochlear implants (mean age 11.1 yr) and 25 control subjects with normal hearing (mean age 9.6 yr) participated in this prospective study. Intervention: Speech reception thresholds (SRT) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the experimental subjects’ everyday program incorporating Adaptive Dynamic Range Optimization (ADRO) as well as with the addition of Autosensitivity control (ASC). Data Collection and Analysis: Adaptive SRTs with the Hearing In Noise Test (HINT) sentences were obtained for all 22 experimental subjects, and performance—in percent correct—was assessed in a fixed +6 dB SNR (signal-to-noise ratio) for a six-subject subset. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the SmartSound setting on the SRT in noise. Results: The primary findings mirrored those reported previously with adult cochlear implant recipients in that the addition of ASC to ADRO significantly improved speech recognition in noise for pediatric cochlear implant recipients. The mean degree of improvement in the SRT with the addition of ASC to ADRO was 3.5 dB for a mean SRT of 10.9 dB SNR. Thus, despite the fact that these children have acquired auditory/oral speech and language through the use of their cochlear implant(s) equipped with ADRO, the addition of ASC significantly improved their ability to recognize speech in high levels of diffuse background noise. The mean SRT for the control subjects with normal hearing was 0.0 dB SNR. Given that the mean SRT for the experimental group was 10.9 dB SNR, despite the improvements in performance observed with the addition of ASC, cochlear implants still do not completely overcome the speech perception deficit encountered in noisy environments accompanying the diagnosis of severe-to-profound hearing loss. Conclusion: SmartSound strategies currently available in latest generation Nucleus cochlear implant sound processors are able to significantly improve speech understanding in a realistic, semidiffuse noise for pediatric cochlear implant recipients. Despite the reluctance of pediatric audiologists to utilize SmartSound settings for regular use, the results of the current study support the addition of ASC to ADRO for everyday listening environments to improve speech perception in a child's typical everyday program.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jing Chen ◽  
Zhe Wang ◽  
Ruijuan Dong ◽  
Xinxing Fu ◽  
Yuan Wang ◽  
...  

Objective: This study was aimed at evaluating improvements in speech-in-noise recognition ability as measured by signal-to-noise ratio (SNR) with the use of wireless remote microphone technology. These microphones transmit digital signals via radio frequency directly to hearing aids and may be a valuable assistive listening device for the hearing-impaired population of Mandarin speakers in China.Methods: Twenty-three adults (aged 19–80 years old) and fourteen children (aged 8–17 years old) with bilateral sensorineural hearing loss were recruited. The Mandarin Hearing in Noise Test was used to test speech recognition ability in adult subjects, and the Mandarin Hearing in Noise Test for Children was used for children. The subjects’ perceived SNR was measured using sentence recognition ability at three different listening distances of 1.5, 3, and 6 m. At each distance, SNR was obtained under three device settings: hearing aid microphone alone, wireless remote microphone alone, and hearing aid microphone and wireless remote microphone simultaneously.Results: At each test distance, for both adult and pediatric groups, speech-in-noise recognition thresholds were significantly lower with the use of the wireless remote microphone in comparison with the hearing aid microphones alone (P < 0.05), indicating better SNR performance with the wireless remote microphone. Moreover, when the wireless remote microphone was used, test distance had no effect on speech-in-noise recognition for either adults or children.Conclusion: Wireless remote microphone technology can significantly improve speech recognition performance in challenging listening environments for Mandarin speaking hearing aid users in China.


2021 ◽  
Vol 6 (3) ◽  
pp. 21-24
Author(s):  
Evgeniya R. Tsygankova ◽  
Vladimir E. Gaufman ◽  
Irina E. Grebenyuk ◽  
Elena E. Saveleva ◽  
Evgenii S. Savelev

Objectives to improve the quality of hearing aids (HA) selection for patients with sensorineural hearing loss using a comparative free sound field speech audiometry according to our modified method "Delta Test". Material and methods. The study involved 56 patients aged from 18 to 62 years with bilateral chronic sensorineural hearing loss of 2-4 degrees. The study group included 32 patients, a test for speech recognition in a free sound field (speech audiometry) was conducted using the method proposed by us. The control group consisted of 24 patients who were aided without the use of comparative speech audiometry. The "Delta Test" included the use of audio files sets containing a speech material in pure form and mixed with speech noise with different signal-to-noise ratios, supplied through a speaker system connected to a personal computer. The percentage of correctly repeated words was measured without HA and with several HA having different settings. The effectiveness of using HA was defined as the difference in the percentage of speech recognition when using HA in relation to the "ear without HA". Results. According to "The International Outcome Inventory for Hearing Aids" the average score was 4.13 0.10 in the group where the HA were selected using the "Delta Test", which is statistically significantly higher than in the control group, where the average score was 3.720.15(p 0.05). "Delta Test" allows optimally select the HA parameters. This method is easy to perform and does not require expensive equipment.


2004 ◽  
Vol 13 (1) ◽  
pp. 62-72 ◽  
Author(s):  
Frank Iglehart

Cochlear implants support deaf students' language development through the improved use of audition in the classroom. Unfortunately, the acoustics of typical classrooms greatly reduce auditory speech perception by these students. Sound-field systems can increase speech-to-noise ratios in classrooms and thus improve use of audition. These systems are used by 80% of students with cochlear implants who use an FM system in the classroom. The present study compares speech perception by 14 school-age cochlear implant recipients via 2 classroom sound-field systems, 1 wall-mounted and the other a personal, or desktop, system. Testing was conducted in 2 classroom environments, 1 noisy and reverberant (typical of many classrooms) and the other ideally quiet with reverberation of short duration. In the quiet room with low reverberation, both sound-field systems produced improved phoneme recognition, but there was no difference between the 2. In the noisy room with high reverberation, the sound-field benefits were greater, and the desktop systems provided more benefit than the wall-mounted systems.


2016 ◽  
Vol 21 (Suppl. 1) ◽  
pp. 16-20 ◽  
Author(s):  
Ulrich Hoppe ◽  
Thomas Hocke ◽  
Alexander Müller ◽  
Anne Hast

Hearing impairment in the elderly is usually treated with conventional hearing aids; however, a large number of older people do not achieve sufficient speech recognition with hearing aids. The aim of the study was to describe speech perception with hearing aids in comparison to pure-tone hearing loss and maximum speech recognition scores for phonemically balanced words. Data from 392 hearing aid users with different degrees of hearing loss were evaluated retrospectively. In particular, pure-tone thresholds, the maximum monosyllabic word score, and the monosyllabic word score in quiet at conversational level with a hearing aid were analysed. The results showed that speech perception scores decline with increasing age. Even when corrected for pure-tone hearing loss, a significant decline in speech recognition scores after the age of 80 years was observed. Regarding the maximum monosyllabic word score, the effect is smaller but still observable; thus, speech recognition with hearing aids is significantly lower for older subjects. This can be attributed partially to the reduction of the information-carrying capacity in this group.


Sign in / Sign up

Export Citation Format

Share Document