The Impact of Music Training and Working Memory on Speech Recognition in Older Age

Author(s):  
Bruna S. Mussoi

Purpose Music training has been proposed as a possible tool for auditory training in older adults, as it may improve both auditory and cognitive skills. However, the evidence to support such benefits is mixed. The goal of this study was to determine the differential effects of lifelong musical training and working memory on speech recognition in noise, in older adults. Method A total of 31 musicians and nonmusicians aged 65–78 years took part in this cross-sectional study. Participants had a normal pure-tone average, with most having high-frequency hearing loss. Working memory (memory capacity) was assessed with the backward Digit Span test, and speech recognition in noise was assessed with three clinical tests (Quick Speech in Noise, Hearing in Noise Test, and Revised Speech Perception in Noise). Results Findings from this sample of older adults indicate that neither music training nor working memory was associated with differences on the speech recognition in noise measures used in this study. Similarly, duration of music training was not associated with speech-in-noise recognition. Conclusions Results from this study do not support the hypothesis that lifelong music training benefits speech recognition in noise. Similarly, an effect of working memory (memory capacity) was not apparent. While these findings may be related to the relatively small sample size, results across previous studies that investigated these effects have also been mixed. Prospective randomized music training studies may be able to better control for variability in outcomes associated with pre-existing and music training factors, as well as to examine the differential impact of music training and working memory for speech-in-noise recognition in older adults.

2014 ◽  
Vol 18 ◽  
pp. 233121651455868 ◽  
Author(s):  
Elaine H. N. Ng ◽  
Elisabet Classon ◽  
Birgitta Larsby ◽  
Stig Arlinger ◽  
Thomas Lunner ◽  
...  

Author(s):  
Julie Beadle ◽  
Jeesun Kim ◽  
Chris Davis

Purpose: Listeners understand significantly more speech in noise when the talker's face can be seen (visual speech) in comparison to an auditory-only baseline (a visual speech benefit). This study investigated whether the visual speech benefit is reduced when the correspondence between auditory and visual speech is uncertain and whether any reduction is affected by listener age (older vs. younger) and how severe the auditory signal is masked. Method: Older and younger adults completed a speech recognition in noise task that included an auditory-only condition and four auditory–visual (AV) conditions in which one, two, four, or six silent talking face videos were presented. One face always matched the auditory signal; the other face(s) did not. Auditory speech was presented in noise at −6 and −1 dB signal-to-noise ratio (SNR). Results: When the SNR was −6 dB, for both age groups, the standard-sized visual speech benefit reduced as more talking faces were presented. When the SNR was −1 dB, younger adults received the standard-sized visual speech benefit even when two talking faces were presented, whereas older adults did not. Conclusions: The size of the visual speech benefit obtained by older adults was always smaller when AV correspondence was uncertain; this was not the case for younger adults. Difficulty establishing AV correspondence may be a factor that limits older adults' speech recognition in noisy AV environments. Supplemental Material https://doi.org/10.23641/asha.16879549


2020 ◽  
Author(s):  
Nathalie Giroud ◽  
Matthias Keller ◽  
Martin Meyer

AbstractMany older adults are struggling with understanding spoken language, particularly when background noise interferes with comprehension. In the present study, we investigated a potential interaction between two well-known factors associated with greater speech-in-noise (SiN) reception thresholds in older adults, namely a) lower working memory capacity and b) age-related structural decline of frontal lobe regions.In a sample of older adults (N=25) and younger controls (N=13) with normal pure-tone thresholds, SiN reception thresholds and working memory capacity were assessed. Furthermore, T1-weighted structural MR-images were recorded to analyze neuroanatomical traits (i.e., cortical thickness (CT) and cortical surface area (CSA)) of the cortex.As expected, the older group showed greater SiN reception thresholds compared to the younger group. We also found consistent age-related atrophy (i.e., lower CT) in brain regions associated with SiN recognition namely the superior temporal lobe bilaterally, the right inferior frontal and precentral gyrus, as well as the left superior frontal gyrus. Those older participants with greater atrophy in these brain regions also showed greater SiN reception thresholds. Interestingly, the association between CT in the left superior frontal gyrus and SiN reception thresholds was moderated by individual working memory capacity. Older adults with greater working memory capacity benefitted more strongly from thicker frontal lobe regions when it comes to improve SiN recognition.Overall, our results fit well into the literature showing that age-related structural decline in auditory- and cognition-related brain areas is associated with greater SiN reception thresholds in older adults. However, we highlight that this association changes as a function of individual working memory capacity. We therefore believe that future interventions to improve SiN recognition in older adults should take into account the role of the frontal lobe as well as individual working memory capacity.HighlightsSpeech-in-noise (SiN) reception thresholds are significantly increased with higher age, independently of pure-tone hearing lossGreater SiN reception thresholds are associated with cortical thinning in several auditory-, linguistic-, and cognitive-related brain areas, irrespective of pure-tone hearing lossGreater cortical thinning in the left superior frontal lobe is detrimental for SiN recognition in older, but not younger adultsOlder adults with greater working memory capacity benefit more strongly from structural integrity of left superior frontal lobe for SiN recognition


Author(s):  
Gertjan Dingemanse ◽  
André Goedegebure

Purpose: This study aimed to evaluate the effect of speech recognition performance, working memory capacity (WMC), and a noise reduction algorithm (NRA) on listening effort as measured with pupillometry in cochlear implant (CI) users while listening to speech in noise. Method: Speech recognition and pupil responses (peak dilation, peak latency, and release of dilation) were measured during a speech recognition task at three speech-to-noise ratios (SNRs) with an NRA in both on and off conditions. WMC was measured with a reading span task. Twenty experienced CI users participated in this study. Results: With increasing SNR and speech recognition performance, (a) the peak pupil dilation decreased by only a small amount, (b) the peak latency decreased, and (c) the release of dilation after the sentences increased. The NRA had no effect on speech recognition in noise or on the peak or latency values of the pupil response but caused less release of dilation after the end of the sentences. A lower reading span score was associated with higher peak pupil dilation but was not associated with peak latency, release of dilation, or speech recognition in noise. Conclusions: In CI users, speech perception is effortful, even at higher speech recognition scores and high SNRs, indicating that CI users are in a chronic state of increased effort in communication situations. The application of a clinically used NRA did not improve speech perception, nor did it reduce listening effort. Participants with a relatively low WMC exerted relatively more listening effort but did not have better speech reception thresholds in noise.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ricky Chow ◽  
Alix Noly-Gandon ◽  
Aline Moussard ◽  
Jennifer D. Ryan ◽  
Claude Alain

AbstractListening to autobiographically-salient music (i.e., music evoking personal memories from the past), and transcranial direct current stimulation (tDCS) have each been suggested to temporarily improve older adults’ subsequent performance on memory tasks. Limited research has investigated the effects of combining both tDCS and music listening together on cognition. The present study examined whether anodal tDCS stimulation over the left dorsolateral prefrontal cortex (2 mA, 20 min) with concurrent listening to autobiographically-salient music amplified subsequent changes in working memory and recognition memory in older adults than either tDCS or music listening alone. In a randomized sham-controlled crossover study, 14 healthy older adults (64–81 years) participated in three neurostimulation conditions: tDCS with music listening (tDCS + Music), tDCS in silence (tDCS-only), or sham-tDCS with music listening (Sham + Music), each separated by at least a week. Working memory was assessed pre- and post-stimulation using a digit span task, and recognition memory was assessed post-stimulation using an auditory word recognition task (WRT) during which electroencephalography (EEG) was recorded. Performance on the backwards digit span showed improvement in tDCS + Music, but not in tDCS-only or Sham + Music conditions. Although no differences in behavioural performance were observed in the auditory WRT, changes in neural correlates underlying recognition memory were observed following tDCS + Music compared to Sham + Music. Findings suggest listening to autobiographically-salient music may amplify the effects of tDCS for working memory, and highlight the potential utility of neurostimulation combined with personalized music to improve cognitive performance in the aging population.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 159-159
Author(s):  
Tiana Broen ◽  
Tomiko Yoneda ◽  
Jonathan Rush ◽  
Jamie Knight ◽  
Nathan Lewis ◽  
...  

Abstract Previous cross-sectional research suggests that age-related decreases in Rapid-Eye Movement (REM) sleep may contribute to poorer cognitive functioning (CF); however, few studies have examined the relationship at the intraindividual level by measuring habitual sleep over multiple days. Applying a 14-day daily diary design, the current study examines the dynamic relationship between REM sleep and CF in 69 healthy older adults (M age=70.8 years, SD=3.37; 73.9% female; 66.6% completed at least an undergraduate degree). A Fitbit device provided actigraphy indices of REM sleep (minutes and percentage of total sleep time), while CF was measured four times daily on a smartphone via ambulatory cognitive tests that captured processing speed and working memory. This research addressed the following questions: At the within-person level, are fluctuations in quantity of REM sleep associated with fluctuations in next day cognitive measures across days? Do individuals who spend more time in REM sleep on average, perform better on cognitive tests than adults who spend less time in REM sleep? A series of multilevel models were fit to examine the extent to which each index of sleep accounted for daily fluctuations in performance on next day cognitive tests. Results indicated that during nights when individuals had more REM sleep minutes than was typical, they performed better on the working memory task the next morning (estimate = -.003, SE = .002, p = .02). These results highlight the impact of REM sleep on CF, and further research may allow for targeted interventions for earlier treatment of sleep-related cognitive impairment.


Sign in / Sign up

Export Citation Format

Share Document