scholarly journals Murine Epidermal Label-Retaining Cells Isolated by Flow Cytometry do not Express the Stem Cell Markers CD34, Sca-1, or Flk-1

2001 ◽  
Vol 117 (4) ◽  
pp. 943-948 ◽  
Author(s):  
Michael R. Albert ◽  
Ruth-Ann Foster ◽  
Jonathan C. Vogel
2004 ◽  
Vol 16 (9) ◽  
pp. 268 ◽  
Author(s):  
K. E. Schwab ◽  
C. E. Gargett

The endometrium is divided into upper functionalis, which rapidly grows then differentiates before being shed, and lower basalis, from which cyclical regeneration begins. A small proportion of endometrial stromal cells have been identified with clonogenic activity, a functional property of stem cells (1). We hypothesised that stromal stem/progenitor cells expressing known stem cell markers reside in the basalis. The aims of this study were to: (1) investigate the clonogenic activity of human endometrial stromal cell populations enriched and depleted for known stem cell markers, and (2) identify a marker that will differentiate basalis from functionalis stroma. Endometrial tissue acquired from 23 ovulating women undergoing hysterectomy was digested with collagenase to produce single cell suspensions. Leukocytes and epithelial cells were removed, and stromal cells analysed by flow cytometry, FACS sorted into enriched and depleted populations, and cultured for clonal analysis as described (1). Markers analysed included stem cell markers, STRO-1, CD133, CD45 and CD34, and an endometrial stromal cell marker, CD90 (2). Immunohistochemical analysis of CD90 was performed on full thickness human endometrial tissue. CD45– endometrial stromal cell populations contained 2.13 � 0.65% (n = 13) STRO-1+, and 5.43 � 1.42% (n = 16) CD133+ cells. Stromal cell populations enriched (0.65 � 0.42%) and depleted (0.95 � 0.58%) for STRO-1 showed no significant difference (P = 0.19, n = 5) for clonogenic activity. Surprisingly, clonogenicity of CD133+ stromal cells (0.74 � 0.56%) was lower than CD133– (3.89 � 1.35%) cells (P = 0.03, n = 6). Immunohistochemical staining showed strong CD90 staining in the functionalis, with lighter staining in the basalis. These observations were confirmed by flow cytometric analysis which identified two distinct populations (n = 9), CD90low (19.55 � 4.35%) and CD90hi (74.71 � 5.20%). Clonogenic analysis of these two populations is underway. Interestingly, dual-colour flow cytometry showed the CD133+ cells to be CD90low (n = 7). Further analysis suggests that the CD90lowCD133+ population are CD45–CD34+, suggesting endothelial progenitor cells. This study identified CD90 as a marker that distinguishes basalis and functionalis stroma, and demonstrated that STRO-1 and CD133 are not functional markers for clonogenic endometrial stromal stem/progenitor cells. (1) Chan RW, Schwab KE, Gargett CE (2004) Biol. Reprod. 70, in press. (2) Fernandez-Shaw S, Shorter SC, Naish CE, Barlow DH, Starkey PM (1992) Hum. Reprod. 7,156–161.


2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii8-ii9
Author(s):  
Takeshi Fujimori ◽  
Daisuke Ogawa ◽  
Kenta Suzuki ◽  
Masaaki Kochi ◽  
Yuki Shibayama ◽  
...  

Abstract INTRODUCTION (Pro)renin receptor(PRR) is part of the Wnt receptor complex. Wnt/β-catenin signaling pathway (Wnt signaling) plays important role in pathogenesis and self-renewal of glioblastoma (GBM), or differentiation of glioma stem cell. We previously reported that PRR activate Wnt signaling, PRR expression correlated with malignancy of glioma, and treatment with PRR siRNA reduced the proliferative capacity. This time, we have developed monoclonal antibodies against PRR and examined their effects in GBM. MATERIAL AND METHODS We used GBM cell line (U251MG and U87MG) and primary human glioma stem cell line (MGG23). Glioma stem-like cells were cultured and isolated by neurosphere method from U251MG and U87MG. PRR antibody was made targeting the extracellular domain of the PRR with rat lymph node method. WST-1 assay or MTT assay were performed to determine the cell proliferation. Apoptosis was examined by FITC labeled annexin V and propidium iodide with flow cytometry. We analyzed molecules of Wnt signaling and stem cell markers with qRT-PCR. RESULTS We observed that PRR antibody significantly reduced cell proliferation, decreased sphere formation. Antibody suppressed cell adherent in stem-like cell. Flow cytometry showed that antibody induced apoptosis. Antibody inhibited Wnt signaling and stem cell markers. CONCLUSIONS PRR antibody reduced cell proliferation and induced apoptosis through Wnt signaling. PRR antibody also suppressed stemness. Our results demonstrated that PRR was a potential target for future glioma therapy.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2824 ◽  
Author(s):  
Bong-Sung Kim ◽  
Pathricia V. Tilstam ◽  
Katrin Springenberg-Jung ◽  
Arne Hendrick Boecker ◽  
Corinna Schmitz ◽  
...  

Background Subcutaneous adipose tissue is a rich source of adipose tissue macrophages and adipose-derived stem cells which both play a key role in wound repair. While macrophages can be divided into the classically-activated M1 and the alternatively-activated M2 phenotype, ASCs are characterized by the expression of specific stem cell markers. Methods In the present study, we have investigated the expression of common macrophage polarization and stem cell markers in acutely inflamed adipose tissue. Subcutaneous adipose tissue adjacent to acutely inflamed wounds of 20 patients and 20 healthy subjects were harvested and underwent qPCR and flow cytometry analysis. Results Expression levels of the M1-specific markers CD80, iNOS, and IL-1b were significantly elevated in inflammatory adipose tissue when compared to healthy adipose tissue, whereas the M2-specific markers CD163 and TGF-β were decreased. By flow cytometry, a significant shift of adipose tissue macrophage populations towards the M1 phenotype was confirmed. Furthermore, a decrease in the mesenchymal stem cell markers CD29, CD34, and CD105 was observed whereas CD73 and CD90 remained unchanged. Discussion This is the first report describing the predominance of M1 adipose tissue macrophages and the reduction of stem cell marker expression in acutely inflamed, non-healing wounds.


2011 ◽  
Author(s):  
Moon Nian Lim ◽  
Umapathy Thiageswari ◽  
Othman Ainoon ◽  
P. J. N. Baharuddin ◽  
R. A. Jamal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document