scholarly journals Geomagnetic long-term secular variations in Italian Lower Cretaceous shallow-water carbonates

1999 ◽  
Vol 137 (3) ◽  
pp. 713-722 ◽  
Author(s):  
D. H. Tarling ◽  
M. Iorio ◽  
B. D'Argenio
2009 ◽  
Vol 66 (7) ◽  
pp. 2073-2084 ◽  
Author(s):  
Peter Névir ◽  
Matthias Sommer

Abstract Nambu field theory, originated by Névir and Blender for incompressible flows, is generalized to establish a unified energy–vorticity theory of ideal fluid mechanics. Using this approach, the degeneracy of the corresponding noncanonical Poisson bracket—a characteristic property of Hamiltonian fluid mechanics—can be replaced by a nondegenerate bracket. An energy–vorticity representation of the quasigeostrophic theory and of multilayer shallow-water models is given, highlighting the fact that potential enstrophy is just as important as energy. The energy–vorticity representation of the hydrostatic adiabatic system on isentropic surfaces can be written in complete analogy to the shallow-water equations using vorticity, divergence, and pseudodensity as prognostic variables. Furthermore, it is shown that the Eulerian equation of motion, the continuity equation, and the first law of thermodynamics, which describe the nonlinear evolution of a 3D compressible, adiabatic, and nonhydrostatic fluid, can be written in Nambu representation. Here, trilinear energy–helicity, energy–mass, and energy–entropy brackets are introduced. In this model the global conservation of Ertel’s potential enstrophy can be interpreted as a super-Casimir functional in phase space. In conclusion, it is argued that on the basis of the energy–vorticity theory of ideal fluid mechanics, new numerical schemes can be constructed, which might be of importance for modeling coherent structures in long-term integrations and climate simulations.


2019 ◽  
Vol 213 ◽  
pp. 486-498 ◽  
Author(s):  
Guanfang Sun ◽  
Yan Zhu ◽  
Ming Ye ◽  
Jinzhong Yang ◽  
Zhongyi Qu ◽  
...  

2008 ◽  
Vol 15 (1) ◽  
pp. 25-32 ◽  
Author(s):  
C. Taricco ◽  
S. Alessio ◽  
G. Vivaldo

Abstract. The dating of the cores we drilled from the Gallipoli terrace in the Gulf of Taranto (Ionian Sea), previously obtained by tephroanalysis, is checked by applying a method to objectively recognize volcanic events. This automatic statistical procedure allows identifying pulse-like features in a series and evaluating quantitatively the confidence level at which the significant peaks are detected. We applied it to the 2000-years-long pyroxenes series of the GT89-3 core, on which the dating is based. The method confirms the dating previously performed by detecting at a high confidence level the peaks originally used and indicates a few possible undocumented eruptions. Moreover, a spectral analysis, focussed on the long-term variability of the pyroxenes series and performed by several advanced methods, reveals that the volcanic pulses are superimposed to a millennial trend and a 400 years oscillation.


2021 ◽  
Author(s):  
Matthew Watkinson ◽  
Grant Cole ◽  
Rhodri Jerrett

<p>Improved understanding of delta mouth bar morphodynamics, and the resulting stratigraphic architectures, is important for predicting the loci of deposition of different sediment fractions, coastal geomorphic change and heterogeneity in mouth bar reservoirs. Facies and architectural analysis of exceptionally well-exposed shallow water (ca. 5 m depth) mouth bars and associated distributaries, from the Xert Formation (Lower Cretaceous), of the Maestrat Basin (east-central Spain), reveal that they grew via a succession of repeated autogenic cycles. The formation is part of a mixed clastic-carbonate succession deposited during a time of active faulting and incipient salt tectonism, but in an area away from their direct influence and where wave and tidal reworking were minimal.</p><p>An initial mouth bar accretion element forms after avulsion of a distributary into shallow standing water. Turbulent expansion of the fluvial jet and high bed friction results in rapid flow deceleration, and deposition of sediment in an aggradational to expansional bar-form. Vertical bar growth causes flattening and acceleration of the jet. The accelerated flow scours channels on the bar top, which focuses further expansion of the mouth bar at individual loci where the channels break through the front of the mouth bar. Here, new mouth bar accretion elements form, downlapping and onlapping against a readily recognizable surface of mouth bar reorganization. Vertical growth of the new mouth bar accretion elements causes flattening and re-acceleration of the jet, leading to channelization, and initiation of the next generation of mouth bar accretion elements. Thus the mouth bar grows, until bed-friction effects cause backwater deceleration and superelevation of flow in the feeding distributary. Within-channel sedimentation, choking and upstream avulsion of the feeding channel, results in mouth bar abandonment. In this study, mouth bars are formed of at least two to three accretion elements, before abandonment happened. The results of this study contrast with the notion that mouth bars form by simple vertical aggradation and radial expansion. However, the architecture and facies distributions of shallow water mouth bars are a predictable product of intrinsic processes that operate to deposit them.</p>


1965 ◽  
Vol 19 (4) ◽  
pp. 372-381 ◽  
Author(s):  
H. L. Cameron

With the advent of air photography, many problems of mapping coast lines, such as those caused by surf action and underwater obstructions, were solved, as the vertical air photo shows the exact configuration of the coast and reveals many of the shallow-water obstructions. This paper shows that aerial photographs, obtained at intervals ranging from 2 to 20 years, contain important information on long-term coastal changes, brought about by wave and current action over a period of time. Two examples of such changes, revealed by sequential aerial photography, are given. It is concluded that a program of systematic study of existing photographs and supplementary rephotography would more than justify its cost.


2020 ◽  
Vol 52 (1) ◽  
pp. 664-678 ◽  
Author(s):  
M. Camm ◽  
L. E. Armstrong ◽  
A. Patel

AbstractThe Lower Cretaceous Britannia Field development is one of the largest and most significant undertaken on the UK Continental Shelf. Production started in 1998 via 17 pre-drilled development wells and was followed by a decade of intensive drilling, whereby a further 40 wells were added. In 2000 Britannia's plateau production of 800 MMscfgd supplied 8% of the UK's domestic gas requirements.As the field has matured, so too has its development strategy. Initial near-field development drilling targeting optimal reservoir thickness was followed by extended reach wells into the stratigraphic pinchout region. In 2014 a further strategy shift was made, moving from infill drilling to a long-term compression project to maximize existing production. During its 20-year history the Britannia Platform has undergone numerous changes. In addition to compression, production from five satellite fields has been routed through the facility: Caledonia (2003), Callanish and Brodgar (2008), Enochdhu (2015) and Alder (2016). A new field, Finlaggan, is due to be brought through Britannia's facilities in 2020, helping to maximize value from the asset for years to come.As Britannia marks 20 years of production it has produced c. 600 MMboe – surpassing the original ultimate recoverable estimate of c. 570 MMboe – and is still going strong today.


Radiocarbon ◽  
1980 ◽  
Vol 22 (2) ◽  
pp. 133-158 ◽  
Author(s):  
Giuliana Castagnoli ◽  
Devendra Lal

This paper is concerned with the expected deviations in the production rate of natural 14C on the earth due to changes in solar activity. We review the published estimates of the global production rates of 14C due to galactic and solar cosmic ray particles, and present new estimates of the expected secular variations in 14C production, taking into account the latest information available on galactic cosmic ray modulation and long-term variations in solar activity.


1974 ◽  
Vol 1 (14) ◽  
pp. 6
Author(s):  
J.S. Driver ◽  
J.D. Pitt

An instrumentation system to record direct measures of both wind and wave conditions has been installed at the Wash. Data from these instruments are used in conjunction with long term wind records from another station to predict the frequency and duration of extreme conditions.


2013 ◽  
Vol 2 (2) ◽  
pp. 289-304 ◽  
Author(s):  
M. van de Kamp

Abstract. This paper presents a novel method to determine a baseline for magnetometer data. This baseline consists of all magnetic field components not related to ionospheric and magnetospheric disturbances, i.e. all field components due to solar quiet variations and other background variations, such as tidal and secular variations, as well as equipment effects. Extraction of this baseline is useful when the magnetic field variations due to solar disturbances are analysed. This makes magnetometer data suitable, for instance, for the calculation of ionospheric equivalent currents related to geomagnetic storms and substorms. The full baseline is largely composed of two main constituents: the diurnal baseline and the long-term baseline. For the diurnal baseline, first "templates" are derived, based on the lowest few harmonics of the daily curves from the quietest days. The diurnal variation of the baseline is obtained by linear interpolation between these templates; this method ensures a smooth baseline at all times, avoiding any discontinuities at transitions between days. The long-term baseline is obtained by linear interpolation between the daily median values of the data; this way the baseline is ensured to follow long-term trends, such as seasonal and tidal variations, as well as equipment drift. The daily median values are calculated for all days except the most disturbed ones; a procedure for this selection is included. The method avoids many problems associated with traditional baseline methods and some of the other recently published methods, and is simpler in procedure than most other recent ones. As far as can be compared, the distribution of the resulting field after removal of the baseline is largely similar to that using other recent baseline methods. However, the main advantage of the method of this paper over others is that it removes equipment drift and other artefacts efficiently without discarding too much data, so that even low-quality data from remote unmanned magnetometers can be made suitable for analysis. This can give valuable contributions to the database of ionospheric equivalent currents, especially in the area near the polar cap boundary.


Sign in / Sign up

Export Citation Format

Share Document