Localization of carbohydrate terminals on Tetracapsuloides bryosalmonae using lectin histochemistry and immunogold electron microscopy

2004 ◽  
Vol 27 (1) ◽  
pp. 37-45 ◽  
Author(s):  
D J Morris ◽  
A Adams
1984 ◽  
Vol 30 (8) ◽  
pp. 1008-1013 ◽  
Author(s):  
C. Mouton ◽  
L. Lamonde

Colloidal gold particles 3–6 nm in diameter were prepared and stabilized with the IgG fraction of polyspecific rabbit antisera produced against four different oral bacteria. The immunogold markers were used in homologous reactions to label the bacteria in a preembedding procedure for electron microscopy. An indirect immunofluorescence procedure was concurrently used to optimize the labelling conditions before observation with the electron microscope. The immunogold markers labelled fibrillar structures extending outward 50–275 nm from the Gram-positive cell envelopes and a fuzzy 5–10 nm thick capsulelike layer on the outer aspect of Bacteroides gingivalis. The immunogold method appears to be a simple, rapid, and inexpensive procedure suitable for the study of bacterial surface antigens and can be upgraded with the use of monospecific antibodies.


2011 ◽  
Vol 59 (11) ◽  
pp. 984-1000 ◽  
Author(s):  
Shanthini Mahendrasingam ◽  
Catherine Bebb ◽  
Ella Shepard ◽  
David N. Furness

Spiral ligament fibrocytes function in cochlear homeostasis, maintaining the endocochlear potential by participating in potassium recycling, and fibrocyte degeneration contributes to hearing loss. Their superficial location makes them amenable to replacement by cellular transplantation. Fibrocyte cultures offer one source of transplantable cells, but determining what fibrocyte types they contain and what phenotype transplanted cells may adopt is problematic. Here, we use immunogold electron microscopy to assess the relative expression of markers in native fibrocytes of the CD/1 mouse spiral ligament. Caldesmon and aquaporin 1 are expressed more in type III fibrocytes than any other type. S-100 is strongly expressed in types I, II, and V fibrocytes, and α1Na,K-ATPase is expressed strongly only in types II and V. By combining caldesmon or aquaporin 1 with S-100 and α1Na,K-ATPase, a ratiometric analysis of immunogold density distinguishes all except type II and type V fibrocytes. Other putative markers (creatine kinase BB and connective tissue growth factor) did not provide additional useful analytical attributes. By labeling serial sections or by double or triple labeling with combinations of three antibodies, this technique could be used to distinguish all except type II and type V fibrocytes in culture or after cellular transplantation into the lateral wall.


1991 ◽  
Vol 98 (1) ◽  
pp. 107-122
Author(s):  
X. Wang ◽  
P. Traub

The karyo-cytoskeleton of cells cultured in vitro was investigated employing resinless section immunogold electron microscopy. Cells were entrapped in low-melting agarose, sequentially extracted with various buffers and digested with nucleases to obtain karyo-cytoskeletal frameworks and reacted with specific primary and gold-conjugated secondary antibodies or gold-conjugated protein A to decorate structural elements of these frameworks. Following embedment of the gold-labeled residual cell structures in diethylene glycol distearate and their sectioning, the embedding material was removed with organic solvent and the sections were finally subjected to CO2 critical point drying. When this technique was applied to mouse skin fibroblasts (MSF), it revealed a dense and salt-stable intranuclear network of fibrogranular material. Antibodies directed against vimentin and lamin B detected a cytoplasmic meshwork of intermediate filaments (IFs) and a nuclear lamina, respectively; the latter, however, only after removal of chromatin from nuclei by nuclease digestion of DNA. Intranuclear filaments free of adhering globular material were morphologically very similar to cytoplasmic vimentin filaments. By contrast, mouse plasmacytoma MPC-11 cells lacking detectable amounts of cytoplasmic IF proteins and lamins A and C were devoid of a salt-stable internal nuclear matrix. The same holds true for MPC-11 cells that had been treated with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate to induce vimentin synthesis and establish a cytoplasmically extended IF network. These findings were in accordance with the biochemical behavior of Triton X-100-treated MSF and MPC-11 cells and their appearance in immunofluorescence microscopy upon extraction with high ionic strength buffer. While the chromatin was quantitatively retained in the residual cell structures derived from MSF cells, in those obtained from MPC-11 cells the nuclear lamina was disrupted and the chromatin was released from the nuclei, suggesting that MPC-11 cells lack the salt-stable nuclear scaffold to which chromatin is normally anchored.


1989 ◽  
Vol 93 (3) ◽  
pp. 491-500 ◽  
Author(s):  
A. Woods ◽  
T. Sherwin ◽  
R. Sasse ◽  
T.H. MacRae ◽  
A.J. Baines ◽  
...  

The detergent-insoluble T. brucei cytoskeleton consists of several morphologically distinct regions and organelles, many of which are detectable only by electron microscopy. We have produced a set of monoclonal antibodies that define each structural component of this highly ordered cytoskeleton. The monoclonal antibodies were selected by cloning of hybridomas produced from mice injected with complex mixtures of proteins of either the cytoskeleton itself or salt extracts thereof. Four antibodies define particular tubulin isotypes and locate the microtubules of the axoneme and sub-pellicular array; two antibodies recognize the flagellum attachment zone; one recognizes the paraflagellar rod and another the basal bodies. Finally, one antibody defines a detergent-insoluble component of the nucleus. The antigens detected by each monoclonal antibody have been analysed by immunofluorescence microscopy, immunogold electron microscopy and Western blotting.


Blood ◽  
1986 ◽  
Vol 68 (2) ◽  
pp. 521-529 ◽  
Author(s):  
MN Fukuda ◽  
G Klier ◽  
J Yu ◽  
P Scartezzini

Congenital dyserythropoietic anemia type II (CDA II or HEMPAS) is a genetic anemia caused by membrane abnormality. Our previous studies indicated that in HEMPAS, erythrocytes band 3 and band 4.5 are not glycosylated by polylactosaminoglycans. The present study was aimed at determining how such underglycosylated band 3 behaves in erythrocyte membranes. By using anti-band 3 antibodies, immunogold electron microscopy revealed that band 3s are clustered in HEMPAS erythrocyte membranes. By freeze-fracture electron microscopy, band 3s were also seen as lightly clumped intramembrane particles on a protoplasmic fracture face. Erythrocyte precursor cells stained by anti-band 3 antibodies showed that band 3s are present in the cytoplasmic area of the reticulocytes as scattered single particles. However, in young erythrocytes in which intracellular membranes are almost degenerated, band 3s were clustered in the cytoplasmic area of the cell. These observations suggest that band 3s cluster before they are incorporated into the plasma membranes of HEMPAS erythrocytes. In contrast to band 3, glycophorin A detected by anti-glycophorin A antibodies did not show a noticeable difference between normal and HEMPAS. Such a clustering of band 3 may cause abnormal localization of band 3-associated proteins and may thus result in the macroscopic membrane abnormality seen in HEMPAS erythrocytes.


2001 ◽  
Vol 49 (8) ◽  
pp. 1013-1023 ◽  
Author(s):  
Jean-Hervé Lignot ◽  
Guy Charmantier

We examined the ontogeny of the osmoregulatory sites of the branchial cavity in embryonic and early postembryonic stages of the European lobster Homarus gammarus through transmission electron microscopy, immunofluorescence microscopy, and immunogold electron microscopy using a monoclonal antibody IgGα5 raised against the avian α-subunit of the Na+,K+-ATPase. In mid-late embryos, Na+,K+-ATPase was located along the pleurites and within the epipodite buds. In late embryos just before hatching, the enzyme was confined to the epipodite epithelia. After hatching, slight differentiations of ionocytes occured in the epipodites of larval stages. Na+,K+-ATPase was also located in the ionocytes of the epipodites of larvae exposed to seawater (35.0‰) and to dilute seawater (22.1 ‰). After metamorphosis, the inner-side branchiostegite epithelium appeared as an additional site of enzyme location in postlarvae held in dilute seawater. Within the ionocytes, Na+,K+-ATP-ase was mostly located along the basolateral infoldings. These observations are discussed in relation to the physiological shift from osmoconforming larvae to slightly hyper-regulating (in dilute seawater) postmetamorphic stages. The acquisition of the ability to hyper-osmo-regulate probably originates from the differentiation, on the epipodites and mainly along the branchiostegites, of ionocytes that are the site of ion pumping as evidenced by the location of Na+,K+-ATPase. (J Histochem Cytochem 49:1013–1023, 2001)


Sign in / Sign up

Export Citation Format

Share Document