The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton

1998 ◽  
Vol 27 (2) ◽  
pp. 359-368 ◽  
Author(s):  
Yixin Fu ◽  
Jorge E. Galan
2009 ◽  
Author(s):  
Nadia Bergeron ◽  
J. Corriveau ◽  
Ann Letellier ◽  
F. Daigle ◽  
L. Lessard ◽  
...  

2000 ◽  
Vol 113 (7) ◽  
pp. 1241-1254 ◽  
Author(s):  
M.K. Shaw ◽  
H.L. Compton ◽  
D.S. Roos ◽  
L.G. Tilney

We have used drugs to examine the role(s) of the actin and microtubule cytoskeletons in the intracellular growth and replication of the intracellular protozoan parasite, Toxoplasma gondii. By using a 5 minute infection period and adding the drugs shortly after entry we can treat parasites at the start of intracellular development and 6–8 hours prior to the onset of daughter cell budding. Using this approach we found, somewhat surprisingly, that reagents that perturb the actin cytoskeleton in different ways (cytochalasin D, latrunculin A and jasplakinolide) had little effect on parasite replication although they had the expected effects on the host cells. These actin inhibitors did, however, disrupt the orderly turnover of the mother cell organelles leading to the formation of a large residual body at the posterior end of each pair of budding parasites. Treating established parasite cultures with the actin inhibitors blocked ionophore-induced egression of tachyzoites from the host cells, demonstrating that intracellular parasites were susceptible to the effects of these inhibitors. In contrast, the anti-microtubule drugs oryzalin and taxol, and to a much lesser extent nocodazole, which affect microtubule dynamics in different ways, blocked parasite replication by disrupting the normal assembly of the apical conoid and the microtubule inner membrane complex (IMC) in the budding daughter parasites. Centrosome replication and assembly of intranuclear spindles, however, occurred normally. Thus, daughter cell budding per se is dependent primarily on the parasite microtubule system and does not require a dynamic actin cytoskeleton, although disruption of actin dynamics causes problems in the turnover of parasite organelles.


1995 ◽  
Vol 9 (1) ◽  
pp. 31-36 ◽  
Author(s):  
B.B. Finlay

The interactions that occur between pathogenic micro-organisms and their host cells are complex and intimate. We have used two enteric pathogens, Salmonella typhimurium and enteropathogenic Escherichia coli (EPEC), to examine the interactions that occur between these organisms and epithelial cells. Although these are enteric pathogens, the knowledge and techniques developed from these systems may be applied to the study of dental pathogens. Both S. typhimurium and EPEC disrupt epithelial monolayer integrity, although by different mechanisms. Both pathogens cause loss of microvilli and re-arrangement of the underlying host cytoskeleton. Despite these similarities, both organisms send different signals into the host cell. EPEC signal transduction involves generation of intracellular calcium and inositol phosphate fluxes, and activation of host tyrosine kinases that results in tyrosine phosphorylation of a 90-kDa host protein. Bacterial mutants have been identifed that are deficient in signaling to the host. We propose a sequence of events that occur when EPEC interacts with epithelial cells. Once inside a host cell, S. typhimurium remains within a vacuole. To define some of the parameters of the intracellular environment, we constructed genetic fusions of known genes with lacZ, and used these fusions as reporter probes of the intracellular vacuolar environment. We have also begun to examine the bacterial and host cell factors necessary for S. typhimurium to multiply within epithelial cells. We found that this organism triggers the formation of novel tubular lysosomes, and these structures are linked with intracellular replication.


2020 ◽  
Author(s):  
Sonja Kühn ◽  
John Bergqvist ◽  
Laura Barrio ◽  
Stephanie Lebreton ◽  
Chiara Zurzolo ◽  
...  

SUMMARYThe enteroinvasive bacterium Shigella flexneri forces its uptake into non-phagocytic host cells through the translocation of T3SS effectors that subvert the actin cytoskeleton. Here, we report de novo actin polymerization after cellular entry around the bacterial containing vacuole (BCV) leading to the formation of a dynamic actin cocoon. This cocoon is thicker than any described cellular actin structure and functions as a gatekeeper for the cytosolic access of the pathogen. Host Cdc42, Toca-1, N-WASP, WIP, the Arp2/3 complex, cortactin, coronin, and cofilin are recruited to the actin cocoon. They are subverted by T3SS effectors, such as IpgD, IpgB1, and IcsB. IcsB immobilizes components of the actin polymerization machinery at the BCV. This represents a novel microbial subversion strategy through localized entrapment of host actin regulators causing massive actin assembly. We propose that the cocoon protects Shigella’s niche from canonical maturation or host recognition.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 74
Author(s):  
Wai-Yan Lui ◽  
Sonia Jangra ◽  
Kit-San Yuen ◽  
Michael George Botelho ◽  
Dong-Yan Jin

The Epstein–Barr virus (EBV) successfully infects 95% of all adults but causes Burkitt’s lymphoma, Hodgkin’s lymphoma, gastric carcinoma, nasopharyngeal carcinoma or other malignancies in only a small subset of infected individuals. The virus must have developed effective viral countermeasures to evade host innate immunity. In this study, we performed functional screens to identify EBV-encoded interferon (IFN) antagonists. Several tegument proteins were found to be potent suppressors of IFN production and/or signaling. The large tegument protein and deubiquitinase BPLF1 antagonized type I IFN production induced by DNA sensors cGAS and STING or RNA sensors RIG-I and MAVS. BPLF1’s ability to suppress innate immune signaling required its deubiquitinase activity. BPLF1 functioned as a catalytically active deubiquitinase for both K63- and K48-linked ubiquitin chains on STING and TBK1, with no ubiquitin linkage specificity. Induced expression of BPLF1 in EBV-infected cells through CRISPRa led to effective suppression of innate DNA and RNA sensing. Another EBV tegument protein, BGLF2, was found to suppress JAK-STAT signaling. This suppression was ascribed to more pronounced K48-linked polyubiquitination and proteasomal degradation of BGLF2-associated STAT2. In addition, BGLF2 also recruited tyrosine phosphatase SHP1 to inhibit tyrosine phosphorylation of JAK1 and STAT1. A BGLF2-deficient EBV activated type I IFN signaling more robustly. Taken together, we characterized the IFN antagonism of EBV tegument proteins BPLF1 and BGLF2, which modulate ubiquitination of key transducer proteins to counteract type I IFN production and signaling in host cells. Supported by HMRF 17160822, HMRF 18170942, and RGC C7027-16G.


2016 ◽  
Vol 84 (6) ◽  
pp. 1826-1841 ◽  
Author(s):  
Georgina C. Dowd ◽  
Manmeet Bhalla ◽  
Bernard Kean ◽  
Rowan Thomas ◽  
Keith Ireton

Many bacterial pathogens subvert mammalian type IA phosphoinositide 3-kinase (PI3K) in order to induce their internalization into host cells. How PI3K promotes internalization is not well understood. Also unclear is whether type IA PI3K affects different pathogens through similar or distinct mechanisms. Here, we performed an RNA interference (RNAi)-based screen to identify components of the type IA PI3K pathway involved in invasin-mediated entry ofYersinia enterocolitica, an enteropathogen that causes enteritis and lymphadenitis. The 69 genes targeted encode known upstream regulators or downstream effectors of PI3K. A similar RNAi screen was previously performed with the food-borne bacteriumListeria monocytogenes. The results of the screen withY. enterocoliticaindicate that at least nine members of the PI3K pathway are needed for invasin-mediated entry. Several of these proteins, including centaurin-α1, Dock180, focal adhesion kinase (FAK), Grp1, LL5α, LL5β, and PLD2 (phospholipase D2), were recruited to sites of entry. In addition, centaurin-α1, FAK, PLD2, and mTOR were required for remodeling of the actin cytoskeleton during entry. Six of the human proteins affecting invasin-dependent internalization also promote InlB-mediated entry ofL. monocytogenes. Our results identify several host proteins that mediate invasin-induced effects on the actin cytoskeleton and indicate that a subset of PI3K pathway components promote internalization of bothY. enterocoliticaandL. monocytogenes.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Lamine Aoudjit ◽  
Ruihua Jiang ◽  
Tae Hoon Lee ◽  
Laura A. New ◽  
Nina Jones ◽  
...  

Glomerular podocytes are critical for the barrier function of the glomerulus in the kidney and their dysfunction causes protein leakage into the urine (proteinuria). Nephrin is a key podocyte protein, which regulates the actin cytoskeleton via tyrosine phosphorylation of its cytoplasmic domain. Here we report that two protein tyrosine phosphatases, PTP1B and PTP-PEST negatively regulate nephrin tyrosine phosphorylation. PTP1B directly binds to and dephosphorylates nephrin, while the action of PTP-PEST is indirect. The two phosphatases are also upregulated in the glomerulus in the rat model of puromycin aminonucleoside nephrosis. Both overexpression and inhibition of PTP1B deranged the actin cytoskeleton in cultured mouse podocytes. Thus, protein tyrosine phosphatases may affect podocyte function via regulating nephrin tyrosine phosphorylation.


2014 ◽  
Vol 133 (2) ◽  
pp. AB247
Author(s):  
Hae Woong Choi ◽  
Rhea Brooking ◽  
Subham Neupane ◽  
Chul-Jin Lee ◽  
Edward Miao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document