PCR detection of Fusarium oxysporum f.sp. gladioli race 1, causal agent of Gladiolus yellows disease, from infected corms

2000 ◽  
Vol 49 (1) ◽  
pp. 89-100 ◽  
Author(s):  
de Haan ◽  
Numansen ◽  
Roebroeck ◽  
van Doorn
2017 ◽  
Vol 65 (2) ◽  
pp. 133-140 ◽  
Author(s):  
H. Kim ◽  
S.-M. Hwang ◽  
J.H. Lee ◽  
M. Oh ◽  
J.W. Han ◽  
...  

2014 ◽  
Vol 39 (3) ◽  
pp. 197-202 ◽  
Author(s):  
Cléia S. Cabral ◽  
Kátia R. Brunelli ◽  
Hélcio Costa ◽  
Maria Esther de N. Fonseca ◽  
Leonardo S. Boiteux ◽  
...  

Plant Disease ◽  
2003 ◽  
Vol 87 (6) ◽  
pp. 692-698 ◽  
Author(s):  
X. G. Zhou ◽  
K. L. Everts

A survey was conducted to determine races and inoculum density of Fusarium oxysporum f. sp. niveum, the causal agent of Fusarium wilt of watermelon in Maryland and Delaware. Virulence on six differential cultivars was tested for each of 63 isolates of F. oxysporum f. sp. niveum, obtained from 25 commercial watermelon fields. Thirteen isolates (21%) were identified as race 0, 36 isolates (57%) as race 1, and 14 isolates (22%) as race 2. Races 0 and 1 were present in 12 (48%) and 10 (40%) of the fields, respectively. The highly aggressive race 2 was identified from five fields in two counties in Maryland and from one field in Delaware, representing 24% of the fields. Race 2 was copresent with one or two other races. Race 2 (19 isolates) predominated among the 25 isolates obtained from a research field in Maryland. Nineteen commercial fields had inoculum densities of F. oxysporum f. sp. niveum ranging from 100 to 1,200 CFU/g of soil at harvest. Within this range of inoculum densities, >20% incidence of wilt was observed when the susceptible watermelon cv. Sugar Baby was planted in samples of soil collected from these fields. The relationship (P < 0.0001) between inoculum density of F. oxysporum f. sp. niveum (X) and incidence of Fusarium wilt (Y) on Sugar Baby was best described using the monomolecular equation, Y = 1 - exp[-0.0013 (X + 166)]. The ratio of pathogenic to total population of F. oxysporum in the fields linearly increased with increasing inoculum density of F. oxysporum f. sp. niveum (R 2 = 0.4; P < 0.0009).


2018 ◽  
Vol 6 (16) ◽  
pp. e00191-18 ◽  
Author(s):  
Honghao Lv ◽  
Yuhong Yang ◽  
Xing Liu ◽  
Jian Ling ◽  
Zhiyuan Fang ◽  
...  

ABSTRACT We present here the draft genome sequence of FGL03-6, a race 1 strain of Fusarium oxysporum f. sp. conglutinans, the pathogen causing Fusarium yellows of cabbage. The FGL03-6 genome consists of 414 scaffolds with 61,662,789 bp (GC content, 47.9%) and 9,790 predicted genes.


2000 ◽  
Vol 104 (5) ◽  
pp. 527-532 ◽  
Author(s):  
Richard C. Hamelin ◽  
Martin Bourassa ◽  
Jimmy Rail ◽  
Mathieu Dusabenyagasani ◽  
Volker Jacobi ◽  
...  
Keyword(s):  

Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 237-240 ◽  
Author(s):  
Matias Pasquali ◽  
Flavia Dematheis ◽  
Giovanna Gilardi ◽  
Maria Lodovica Gullino ◽  
Angelo Garibaldi

Fusarium oxysporum f. sp. lactucae, the causal agent of Fusarium wilt of lettuce, has been reported in three continents in the last 10 years. Forty-seven isolates obtained from infected plants and seed in Italy, the United States, Japan, and Taiwan were evaluated for pathogenicity and vegetative compatibility. Chlorate-resistant, nitrate-nonutilizing mutants were used to determine genetic relatedness among isolates from different locations. Using the vegetative compatibility group (VCG) approach, all Italian and American isolates, type 2 Taiwanese isolates, and a Japanese race 1 were assigned to the major VCG 0300. Taiwanese isolates type 1 were assigned to VCG 0301. The hypothesis that propagules of Fusarium oxysporum f. sp. lactucae that caused epidemics on lettuce in 2001-02 in Italian fields might have spread via import and use of contaminated seeds is discussed.


2007 ◽  
Vol 25 (3) ◽  
pp. 451-454 ◽  
Author(s):  
Ailton Reis ◽  
Leonardo S Boiteux

Fusarium wilt, caused by three races of Fusarium oxysporum f. sp. lycopersici, is one of the most important tomato diseases. In Brazil, all three races were reported, however, race 3 has been so far restricted only to Espírito Santo State. In the present work, seven F. oxysporum isolates obtained from wilted plants of the race 1 and 2-resistant tomato hybrids 'Giovana', 'Carmen' and 'Alambra' in São José de Ubá and Itaocara (Rio de Janeiro State, Brazil) were characterized at race level. Virulence assays were performed using a set of race differential cultivars: 'Ponderosa' (susceptible to all races), 'IPA-5' (resistant to race 1), 'Floradade' (resistant to races 1 and 2), 'BHRS-2,3' (resistant to all three races). Two wild tomato accessions (Solanum pennellii 'LA 716' e S. chilense 'LA 1967') previously reported as resistant to all Brazilian isolates of F. oxysporum f. sp. lycopersici were also evaluated. Isolates from São José de Ubá and Itaocara were highly virulent to 'Ponderosa', 'IPA-5' and 'Floradade'. They were also able to infect a few plants of 'BHRS-2,3', inducing vascular browning and wilt symptoms. Solanum pennellii and S. chilense accessions displayed an extreme (immune-like) resistant response. These results indicated that all seven isolates could be classified as F. oxysporum f. sp. lycopersici race 3, expanding the geographical distribution of this pathogen within Brazil. The hypothesis of transmission via contaminated seeds is reinforced after the present report, which confirms the almost simultaneous outbreak of race 3 in two geographically isolated tomato-growing areas in Brazil (Espirito Santo and Rio de Janeiro). Evaluation of commercial seed lots imported into Brazil for contamination with the pathogen would be necessary in order to avoid nation-wide spread of this serious disease.


Author(s):  
Tania Ameyally Rios-Hernández ◽  
Alberto Uc-Varguez ◽  
Zahaed Evangelista-Martínez

<em>Fusarium oxysporum</em> causa la pudrición del cormo en gladiolo provocando pérdidas de hasta el 100%. Se seleccionaron aislados de Fusarium a partir de cormos infectados, se identificó morfológica y molecularmente y se seleccionó un aislado a partir de prueba de patogenicidad. Se seleccionó entre 22 aislados de estreptomicetos una cepa que presentó una actividad antagonista del 40% contra <em>Fusarium</em>. Se obtuvo el Extracto Bioactivo (EB) mediante Fermentación en Fase Sólida y se determinó la concentración mínima inhibitoria (MIC) y concentración mínima letal (MLC) por el método de microdilución. Se obtuvo una MIC para el EB de 0.19 mg mL-1 y una MLC de 0.38 mg mL-1, que se confirmó con un ensayo de germinación de microconidios a 8 h, mostrando un porcentaje de inhibición del 17 y 98% para ¼ y ½ de la MIC. Se evaluó el efecto del EB a 1 y 2 MIC’s de concentración contra la pudrición en cormos de gladiolo infectados, obteniendo un efecto protector en los cormos al mantener su dureza después de 15 días, en comparación con el fungicida Carbendazim. Los resultados indican a <em>Streptomyces</em> sp., como un potencial agente de control biológico contra <em>F. oxysporum</em>.


Sign in / Sign up

Export Citation Format

Share Document