Allometric Model for Leaf Area Estimation in Black Pepper (Piper nigrum L.)

2002 ◽  
Vol 188 (2) ◽  
pp. 138-140 ◽  
Author(s):  
K. Kandiannan ◽  
C. Kailasam ◽  
K. K. Chandaragiri ◽  
N. Sankaran
2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Issukindarsyah Issukindarsyah ◽  
Endang Sulistyaningsih ◽  
Didik Indradewa ◽  
Eka Tarwaca Susila Putra

Abstract. Issukindarsyah, Sulistyaningsih E, Indradewa D, Putra ETS. 2020. The growth of three varieties of black pepper (Piper nigrum) under different light intensities related to indigenous hormones role. Biodiversitas 21: 1778-1785. Low light intensity causes the alteration of plant biochemical and morphological as the mechanism of adaptation. The experiment used split-plot design with three replications. The main plots were three light intensity levels, i.e. 100%, 75%, and 50% radiation; while subplots were three varieties namely Nyelungkup, Petaling 1 and Petaling 2. This research was conducted to figure out the effect of shadings on hormones and the growth of three varieties of black pepper (Piper nigrum L.). The results showed that in initial vegetative growth, varieties of Nyelungkup and Petaling 1 had higher growth of both ortotroph and plagiotroph branches, leaf number, leaf area, length of root, root surface area, plant dry weight, nett assimilation rate, and plant growth rate than the variety of Petaling 2. The light intensity of 50% and 75% increased the auxin and gibberellin contents of the leaf but they did not affect the zeatin. The maximum gibberellin and auxin contents of leaf were recorded at 75% light intensity. The 50% and 75% light intensity raised the length, diameter, and internode of ortotroph branch; number, length, and internode of plagiotroph branch; leaf number; leaf area; leaf area ratio; length of root; root surface area; plant growth rate and plant dry weight related to indigenous hormones role.


2015 ◽  
Vol 53 (3) ◽  
pp. 342-348 ◽  
Author(s):  
D. Buttaro ◽  
Y. Rouphael ◽  
C. M. Rivera ◽  
G. Colla ◽  
M. Gonnella

2007 ◽  
Vol 37 (5) ◽  
pp. 1458-1461 ◽  
Author(s):  
Fábio Luiz Partelli ◽  
Henrique Duarte Vieira ◽  
Alexandre Pio Viana

This research was aimed at establishing regression equations to estimate black pepper (Piper nigrum) leaf area based on linear leaf measures. Different black pepper varieties where growth on the field, four different size leaves were collected per plant with a total of 52 leaves to establish the regression equation and 28 to validate the equation for each variety (Bragantina, Laçará, Guajarina e Cingapura). Leaf midrib length (LML), maximum leaf broad width (MLBW) and leaf area (LA) were measured. Pearson's linear correlation coefficients were determined between observed and predicted measures with the observed LA, besides estimating the linear regression equation for each variety. The equations best-fitted to estimate LA based on circumscript rectangle were: 1) LA = 2.2689 + 0.6900 x LML x MLBW; 2) LA = 1.6402 + 0.6816 x LML x MLBW; 3) LA = 1.4942 + 0.6215 x LML x MLBW and 4) LA = 0.7467 + 0.6735 x LML x MLBW, for Bragantina, Laçará, Guajarina and Cingapura varieties respectively. For all equations predicted values had high correlation coefficient with observed values thus showing that these equations must be variety specific and that they are appropriate for black pepper leaf area estimative.


2018 ◽  
pp. 449-452
Author(s):  
G. Fascella ◽  
Y. Rouphael ◽  
C. Cirillo ◽  
M.M. Mammano ◽  
A. Pannico ◽  
...  

2015 ◽  
Author(s):  
D. Buttaro ◽  
Y. Rouphael ◽  
C. M. Rivera ◽  
G. Colla ◽  
M. Gonnella

2020 ◽  
Vol 15 (2) ◽  
pp. 77
Author(s):  
DONO WAHYUNO ◽  
DYAH MANOHARA ◽  
RUDI T. SETIYONO

<p>ABSTRAK</p><p>Busuk pangkal batang (BPB) lada yang disebabkan oleh cendawanPhytophthora capsici merupakan masalah utama pada budidaya lada diIndonesia. Penyakit ini telah ditemukan di semua areal produksi lada diIndonesia. Sampai saat ini, saran pengendalian yang dianjurkan adalahpengendalian secara terpadu untuk mengurangi kerugian ekonomi akibatpenyakit ini. Akhir-akhir ini usaha untuk mendapatkan jenis lada yangtahan dilakukan melalui persilangan. Tujuan penelitian ini adalahmengevaluasi ketahanan F1 yang diperoleh dari persilangan beberapatetua. Penelitian dilakukan di laboratorium dan rumah kaca, BalaiPenelitian Tanaman Rempah dan Obat, Bogor, dari Januari sampaiDesember 2005. Dari 400 aksesi hasil persilangan yang ada, dipilih 15aksesi yang menunjukkan hasil yang menjanjikan pada uji pendahuluan.Tiga isolat Phytophthora yang menunjukkan virulensi yang berbedadigunakan sebagai isolat uji. Di laboratorium, helaian daun ke-3 dan 4diambil dari tiap aksesi dan diletakkan dalam kotak yang telah diberi tissuebasah untuk menjaga kelembapannya. Inokulasi secara buatan dilakukandengan meletakkan potongan koloni masing-masing isolat Phytophthorapada permukaan bawah daun. Luas nekrosa yang terbentuk pada masing-masing aksesi diukur dengan leaf area meter setelah diinkubasi selama 72jam. Percobaan di rumah kaca dilakukan dengan cara menyiramkansuspensi zoospora sebanyak 50 ml pada bibit lada dari masing-masingaksesi yang telah berumur 4 bulan. Jumlah tanaman yang mati dihitungsetelah diinkubasi selama 1 bulan. Data hasil pengukuran luas serangandianalisis dengan rancangan faktorial dengan dua faktor untuk duakegiatan di atas. Hasil penelitian menunjukkan bahwa tidak ada interaksiyang nyata antara aksesi dengan isolat Phytophthora yang digunakan, baikpengujian in vitro maupun rumah kaca. Sembilan aksesi menunjukkankerusakan kurang dari 20% saat di laboratorium maupun di rumah kaca,dan aksesi 27-1, 36-31, dan 4-5L menunjukkan kerusakan kurang dari10%. Persilangan lebih lanjut perlu dilakukan pada aksesi-aksesi tersebutuntuk mendapatkan keturunan yang mempunyai ketahanan lebih baik danstabil.</p><p>Kata kunci : Piper nigrum L., Phytophthora, ketahanan, persilangan</p><p>ABSTRACT</p><p>Resistance of Black Pepper Accessions to Phytophthora capsiciFoot rot disease of black pepper caused by Phytophthora capsici ismain constraint in black pepper cultivation in Indonesia. The diseasespread widely over all pepper producing areas in Indonesia. Integratedpest managements are suggested to reduce the economic loss due to thedisease. Recently, breeding program has been developed in Indonesiathrough hybridization to find out promising accessions resistant to foot rotdisease. The objective of the present study was to evaluate the resistanceof F1 progenies obtained from polination of various parents to foot rotdisease. Among 400 accessions of black pepper obtained from breedingprogram, 15 accessions were selected based on previous evaluation. ThreePhytophthora isolates were used as tester in the study. The research wascarried out in laboratory and glass house of Indonesian Spice andMedicinal Crops Research Institute, from January to December 2005. Invitro screening was carried out by inoculating detached third and fourthleaves of each accession. The leaves were set in boxes abaxial surfacefacing up, while wet tissue papers were used to retain air humidity in thebox. The lower leaf surface of each pepper accession was inoculated witha piece of Phytophthora colony then incubated in room temperature. Thewidth of necrotic areas was measured with leaf area meter after the leaveswere incubated for 72 hours. Each treatment was replicated 5 times. Ingreen house experiment, 4 month seedlings of each accession wereinoculated with 50 ml of zoospore suspension (10 5  zoospore/ml), replicated3 times, and each replication consisted of 5 seedlings. The number ofinoculated seedlings was counted after one month of incubation. Bothexperiments were arranged using factorial design with two factors: pepperaccession and Phytophthora isolate. There was no significant interactionbetween black pepper accession and the Phytophthora isolates, neither invitro nor green house. Nine accessions showed disease severity less than20%, and accession number 27-1, 36-31, and 4-5L showed disease severitybelow 10% in both experiments. To obtain better progeny resistant to stemrot disease and more stable, it is suggested to continue this pollinationprogram by using those promising accessions.</p><p>Key words: Piper nigrum L., Phytophthora, resistance, pollination</p>


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Ravanachandar A ◽  
Rex B ◽  
Lakshmanan V ◽  
Sudhakaran M

India is known as the “Land of spices” from time immemorial and emerged as a leading country in respect of area, production and export of spices in the world. Black pepper (Piper nigrum), known as “king of spices”, is a perennial export cash crop in India. An experiment was conducted at Horticultural Research Station, Yercaud, Tamil Nadu Agricultural University, Coimbatore with an objective to study the effect of organic and biofertilizers on growth parameters in Black Pepper. Experiment was laid out with six treatments replicated four times in a randomized block design. Among the treatments of organic manures and biofertilizers viz., vine lengths were recorded at initial stage (before the commencement of trial), flowering stage and harvesting stage. Internodal length and leaf area were recorded at flowering stage and harvesting stage, the vine length (8.91,9.01 & 9.12 m), internodal length (5.11 & 5.20 cm) and leaf area (88.17 & 89.35 cm2 ) was higher in the combined application (T3 ) of FYM, Neem Cake, Azospirillum and Phosphobacteria compare to over control.


Planta Medica ◽  
2011 ◽  
Vol 77 (05) ◽  
Author(s):  
HRW Dharmaratne ◽  
BL Tekwani ◽  
NPD Nanayakkara
Keyword(s):  

2015 ◽  
Vol 4 (3) ◽  
pp. 460-468
Author(s):  
Yap Chin Ann

The last nutrient management review of black pepper was done in 1968. There is, therefore, a need to develop new technology to improve pepper production and transfer that technology to production site. This experiment was carried out to study the effect of newly developed biochemical fertilizer on some physiological characteristics, yield and soil fertility of pepper. The treatment consisted of T1 (BS): chemical fertilizer (N:12%, P:12%, K:17%); T2 (BK1): biochemical fertilizer F1 N:15%, P:5%, K:14) and T3 (BK2): biochemical fertilizer F2 (N:13%, P:4%, K:12). The biochemical fertilizer F1 out-yielded chemical and biochemical fertilizer F2 by 75.38% and 16.45% respectively with the higher yield being associated with various phonotypical alterations, which are reported here. Significant measureable changes were observed in physiological processes and plant characteristics, such as large leaf area index, more chlorophyll content and high photosynthesis rate coupled with lower transpiration rate in biochemical fertilizer F1(BK1) treatment compared with other treatment. The high fertility level in biochemical fertilizer F1 and biochemical fertilizer F2 (BK2) reflected the important of organic material in improving soil quality. In conclusion, the achieve high growth performance and yield in pepper, chemical fertilizer alone is insufficient whilst combination of organic and inorganic fertilizer with balance nutrient content gave a significant increase in yield and growth of pepper. 


Sign in / Sign up

Export Citation Format

Share Document