scholarly journals The growth of three varieties of black pepper (Piper nigrum) under different light intensities related to indigenous hormones role

2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Issukindarsyah Issukindarsyah ◽  
Endang Sulistyaningsih ◽  
Didik Indradewa ◽  
Eka Tarwaca Susila Putra

Abstract. Issukindarsyah, Sulistyaningsih E, Indradewa D, Putra ETS. 2020. The growth of three varieties of black pepper (Piper nigrum) under different light intensities related to indigenous hormones role. Biodiversitas 21: 1778-1785. Low light intensity causes the alteration of plant biochemical and morphological as the mechanism of adaptation. The experiment used split-plot design with three replications. The main plots were three light intensity levels, i.e. 100%, 75%, and 50% radiation; while subplots were three varieties namely Nyelungkup, Petaling 1 and Petaling 2. This research was conducted to figure out the effect of shadings on hormones and the growth of three varieties of black pepper (Piper nigrum L.). The results showed that in initial vegetative growth, varieties of Nyelungkup and Petaling 1 had higher growth of both ortotroph and plagiotroph branches, leaf number, leaf area, length of root, root surface area, plant dry weight, nett assimilation rate, and plant growth rate than the variety of Petaling 2. The light intensity of 50% and 75% increased the auxin and gibberellin contents of the leaf but they did not affect the zeatin. The maximum gibberellin and auxin contents of leaf were recorded at 75% light intensity. The 50% and 75% light intensity raised the length, diameter, and internode of ortotroph branch; number, length, and internode of plagiotroph branch; leaf number; leaf area; leaf area ratio; length of root; root surface area; plant growth rate and plant dry weight related to indigenous hormones role.

HortScience ◽  
1991 ◽  
Vol 26 (9) ◽  
pp. 1204-1207 ◽  
Author(s):  
Thomas G. Ranney ◽  
Nina L. Bassuk ◽  
Thomas H. Whitlow

Growth and physiological characteristics were evaluated in autografted and reciprocally grafted plants of Prunus avium L. ×pseudocerasus Lindl. `Colt' and Prunus cerasus L. `Meteor'. Containerized plants were grown for 150 days in a greenhouse under either well-watered or water-stressed conditions. Both the scion and rootstock influenced growth (relative growth rate, R̄), morphological [leaf area : root surface area (LARSA) and specific leaf area (SLA)], and physiological (mean net assimilation rate, Ē) characteristics of grafted plants. Regardless of the watering regime, plants with `Meteor' scions and `Colt' rootstocks maintained higher R̄ than plants with `Colt' scions and `Meteor' rootstocks. This enhanced growth occurred as a result of higher Ē. Measurements on water-stressed plants also showed that the graft combination of `Meteor' on `Colt' had the lowest LARSA, while the reciprocal combination of `Colt' on `Meteor' had the highest. Differences in LARSA among water-stressed plants primarily reflected changes in SLA, as influenced by both rootstock and scion, and not in partitioning of dry weight between these organs.


2018 ◽  
Vol 28 (5) ◽  
pp. 629-636 ◽  
Author(s):  
Matthew B. Bertucci ◽  
David H. Suchoff ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Christopher C. Gunter ◽  
...  

Grafting of watermelon (Citrullus lanatus) is an established production practice that provides resistance to soilborne diseases or tolerance to abiotic stresses. Watermelon may be grafted on several cucurbit species (interspecific grafting); however, little research exists to describe root systems of these diverse rootstocks. A greenhouse study was conducted to compare root system morphology of nine commercially available cucurbit rootstocks, representing four species: pumpkin (Cucurbita maxima), squash (Cucurbita pepo), bottle gourd (Lagenaria siceraria), and an interspecific hybrid squash (C. maxima × C. moschata). Rootstocks were grafted with a triploid watermelon scion (‘Exclamation’), and root systems were compared with nongrafted (NG) and self-grafted (SG) ‘Exclamation’. Plants were harvested destructively at 1, 2, and 3 weeks after transplant (WAT), and data were collected on scion dry weight, total root length (TRL), average root diameter, root surface area, root:shoot dry-weight ratio, root diameter class proportions, and specific root length. For all response variables, the main effect of rootstock and rootstock species was significant (P < 0.05). The main effect of harvest was significant (P < 0.05) for all response variables, with the exception of TRL proportion in diameter class 2. ‘Ferro’ rootstock produced the largest TRL and root surface area, with observed values 122% and 120% greater than the smallest root system (‘Exclamation’ SG), respectively. Among rootstock species, pumpkin produced the largest TRL and root surface area, with observed values 100% and 82% greater than those of watermelon, respectively. These results demonstrate that substantial differences exist during the initial 3 WAT in root system morphology of rootstocks and rootstock species available for watermelon grafting and that morphologic differences of root systems can be characterized using image analysis.


1989 ◽  
Vol 7 (1) ◽  
pp. 41-45 ◽  
Author(s):  
T.G. Ranney ◽  
N.L. Bassuk ◽  
T.H. Whitlow

Abstract Dormant pruning, a film antitranspirant, and soil-applied paclobutrazol were evaluated as transplanting treatments in newly transplanted ‘Colt’ cherry trees under irrigated and water-stressed conditions. Under irrigated conditions all three treatments were effective in reducing plant water loss. However, all three treatments resulted in large reductions in mean growth rate, mean relative growth rate, root dry weight, and root surface area. The pruning treatment had no effect on the leaf area:root area ratio whereas the antitranspirant treatment resulted in an increased leaf area:root area ratio, a response considered undesirable. Paclobutrazol decreased the leaf area:root area ratio but also induced abnormal radial enlargement of plant roots. Under water-stressed conditions all three treatments were effective in reducing plant water loss and were successful in delaying plant water stress. Both pruned and antitranspirant treated plants had improved relative growth rates as compared to the controls.


Poljoprivreda ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 25-33
Author(s):  
Issukindarsyah Issukindarsyah ◽  
◽  
Endang Sulistyaningsih ◽  
DidikIndradewa Indradewa ◽  
Eka Tarwaca Susila Putra

The study’s objective was to determine the effect of the NO3-: NH4+ratio and types of support on NPK uptake and pepper plant growth in field conditions. The study used a completely randomized block design with three replications. The first factor was the type of support, being the deadwood and living supports in the form of Gliricidia sp. and Ceiba pentandra. The second factor was the ratio of N fertilizer forms, which were 100% NO3-, 100% NH4+, 50% NO3-:50% NH4+, 75% NO3-:25% NH4+ and 25% NO3-:75% NH4+. The results have demonstrated that the uptake of N, P, and K, as well as the plant growth, were not affected by the interaction of the N fertilizer form ratio with the types of support. In field conditions, the black pepper prefers the N fertilizer in the form of 50% NO3-:50% NH4+. The pepper plants that were given N fertilizer in a combination of 50% NO3-:50% NH4+ have demonstrated an N, P, and K uptake, and morphology and plant dry weight were higher than the ratio of other forms of N fertilizers.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1840 ◽  
Author(s):  
Bateer Baiyin ◽  
Kotaro Tagawa ◽  
Mina Yamada ◽  
Xinyan Wang ◽  
Satoshi Yamada ◽  
...  

Crop production under hydroponic environments has many advantages, yet the effects of solution flow rate on plant growth remain unclear. We conducted a hydroponic cultivation study using different flow rates under light-emitting diode lighting to investigate plant growth, nutrient uptake, and root morphology under different flow rates. Swiss chard plants were grown hydroponically under four nutrient solution flow rates (2 L/min, 4 L/min, 6 L/min, and 8 L/min). After 21 days, harvested plants were analyzed for root and shoot fresh weight, root and shoot dry weight, root morphology, and root cellulose and hemicellulose content. We found that suitable flow rates, acting as a eustress, gave the roots appropriate mechanical stimulation to promote root growth, absorb more nutrients, and increase overall plant growth. Conversely, excess flow rates acted as a distress that caused the roots to become compact and inhibited root surface area and root growth. Excess flow rate thereby resulted in a lower root surface area that translated to reduced nutrient ion absorption and poorer plant growth compared with plans cultured under a suitable flow rate. Our results indicate that regulating flow rate can regulate plant thigmomorphogenesis and nutrient uptake, ultimately affecting hydroponic crop quality.


Author(s):  
Sylvia Morais de Sousa ◽  
Christiane Abreu de Oliveira ◽  
Daniele Luiz Andrade ◽  
Chainheny Gomes de Carvalho ◽  
Vitória Palhares Ribeiro ◽  
...  

2017 ◽  
Vol 6 (2) ◽  
pp. 58 ◽  
Author(s):  
Daishu Yi ◽  
Timothy Schwinghamer ◽  
Yolande Dalpé ◽  
Jaswinder Singh ◽  
Shahrokh Khanizadeh

Wheat is an important crop, playing inevitable roles in human life, ranging from major food resource to raw material for biofuel. However, due to the dramatically reduced available arable areas and increasingly severe abiotic and biotic stresses, wheat production nowadays faces extreme challenges.. Many approaches have been explored to increase wheat yield including development of new cultivars. One of the most promising approaches is the application of the naturally existent arbuscular mycorrhiza (AM), a mutualistic symbiosis originated over 400 million years ago. AM have long been known to form mutualistic symbiosis with various plants to enhance yield production and to improve stress tolerance, especially drought and salinity. But the benefits vary among AM strains and plant species. Therefore, the objective of the study was to investigate the influence of four AM strains colonized on four selected spring wheat varieties under three salt concentrations (0, 50, 100 mmol/L). The results demonstrated that wheat inoculated with arbuscular mycorrhizal strains Funneliformis mosseae and Rhizoglomusirregulare mitigated yield losses caused by increased salinity stresses as well as strengthened root growth in comparison with non-inoculated plant controls. Salinity stress, however, had non-significant negative effects on most variables, except for grain yield, root surface area and root dry weight, in which a significant decrease was observed in root surface area and root dry weight with the increasing of saline concentration.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1542
Author(s):  
Chengbo Zhou ◽  
Yubin Zhang ◽  
Wenke Liu ◽  
Lingyan Zha ◽  
Mingjie Shao ◽  
...  

Light is a crucial environmental signal and photosynthetic energy for plant growth, development, and primary and secondary metabolism. To explore the effects of light quality on the growth and root exudates of hydroponic lettuce (Lactuca sativa L.), white LED (W, control) and four the mixtures of red (R) and blue (B) LED with different R/B light intensity ratios (R/B = 2, 2R1B; R/B = 3, 3R1B; R/B = 4, 4R1B; and R/B = 8, 8R1B) were designed. The results showed that the biomass of lettuce under 8R1B and W treatments was higher than that under other light quality treatments. The photosynthetic rate (Pn) under red and blue light was significantly higher than that of white light. Total root length, root surface area, and root volume were the highest under 8R1B. 4R1B treatment significant increased root activity by 68.6% compared with W. In addition, total organic carbon (TOC) content, TOC content/shoot dry weight, TOC content/root dry weight, and TOC content/root surface area were the highest under 4R1B. Moreover, 8R1B treatment reduced the concentration of benzoic acid and salicylic acid, and the secretion ability of benzoic acid and salicylic acid by per unit root surface area and accumulation by per unit shoot dry weight. In addition, 2R1B and 3R1B reduced the secretion ability of gallic acid and tannic acid by per unit root surface area and accumulation by per unit shoot dry weight. In conclusion, this study showed that the secretion of autotoxins could be reduced through the mediation of red and blue light composition of LEDs in a plant factory. In terms of autotoxin secretion reduction efficiency and yield performance of lettuce, 8R1B light regime is recommended for practical use.


1994 ◽  
Vol 123 (3) ◽  
pp. 327-332 ◽  
Author(s):  
C. G. Kjellström ◽  
H. Kirchmann

SUMMARYAt the research farm of the Swedish University of Agricultural Sciences, Uppsala, above- and belowground production and changes with time in root length, mean root radius and root surface area of spring oilseed rape were studied during the growing seasons 1987 and 1990. In both years, the highest root growth rate was recorded during the stem elongation phase, and the highest shoot growth rate during flowering. The root: shoot ratio decreased throughout the whole period of root sampling, from 0·64 to 0·16, during the cool and wet first year. In the warmer and drier second year, the ratio increased to a maximum of 0·72 when flowering started, and thereafter decreased. More than 80% of the root dry matter was found in the topsoil. Roots were longer and thinner in the dry and warm 1990 than in the wet and cool 1987. Maximum root length was c. 4·9 km/m2 in 1990, and mean root radius varied between 01 and 0·7 mm. Increases in root surface area during periods of root growth were due to increased root length rather than to increased mean root radius.


HortScience ◽  
2012 ◽  
Vol 47 (8) ◽  
pp. 1085-1090 ◽  
Author(s):  
Mara Grossman ◽  
John Freeborn ◽  
Holly Scoggins ◽  
Joyce Latimer

The objective of this study is to evaluate the branching effect of benzyladenine (BA) on herbaceous perennial plants during the production of rooted cuttings (liners) and to examine and quantify the root growth of these liners using multiple methods of root evaluation. Five crops were studied: Agastache Clayt. Ex Gronov. ‘Purple Haze’, Gaura lindheimeri Engelm. & A. Gray ‘Siskiyou Pink’, Lavandula ×intermedia Emeric ex Loisel. ‘Provence’, Leucanthemum ×superbum (Bergmans ex J.W. Ingram) Bergmans ex Kent. ‘Snowcap’, and Salvia ×sylvestris L. (pro sp.) ‘May Night’. After rooting but before transplant, BA was applied to rooted cuttings as four treatments: controls (0 mg·L−1), one application of 300 mg·L−1, two applications of 300 mg·L−1, or one application of 600 mg·L−1. Results varied by crop; all crops except Salvia had increased branching as measured as either increased lateral or basal branches and/or increased leaders at 3 to 4 weeks after initial treatment. Four crops showed reduced root growth, whereas Gaura was unaffected. Root dry weight was found to be highly correlated with root surface area and root volume. After transplant and growing out, branching of the finished plants was increased in Gaura and Lavandula, unaffected in Salvia and Leucanthemum, and decreased in Agastache. Treating rooted cuttings with BA before transplant increased branching but the effects were not long lasting, which suggests that additional applications at or after transplant may improve finished plant quality. Reductions in root growth noted in rooted cuttings did not affect the growth of finished plants. Chemical names: N-(phenylmethyl)-1H-purine-6-amine (benzyladenine, BA).


Sign in / Sign up

Export Citation Format

Share Document