Carbon cycle and climate change during the Cretaceous inferred from a biogeochemical carbon cycle model

Island Arc ◽  
1999 ◽  
Vol 8 (2) ◽  
pp. 293-303 ◽  
Author(s):  
Eiichi Tajika
2002 ◽  
Vol 16 (4) ◽  
pp. 31-1-31-15 ◽  
Author(s):  
M. Berthelot ◽  
P. Friedlingstein ◽  
P. Ciais ◽  
P. Monfray ◽  
J. L. Dufresne ◽  
...  

2005 ◽  
Vol 18 (10) ◽  
pp. 1609-1628 ◽  
Author(s):  
H. Damon Matthews ◽  
Andrew J. Weaver ◽  
Katrin J. Meissner

Abstract The behavior of the terrestrial carbon cycle under historical and future climate change is examined using the University of Victoria Earth System Climate Model, now coupled to a dynamic terrestrial vegetation and global carbon cycle model. When forced by historical emissions of CO2 from fossil fuels and land-use change, the coupled climate–carbon cycle model accurately reproduces historical atmospheric CO2 trends, as well as terrestrial and oceanic uptake for the past two decades. Under six twenty-first-century CO2 emissions scenarios, both terrestrial and oceanic carbon sinks continue to increase, though terrestrial uptake slows in the latter half of the century. Climate–carbon cycle feedbacks are isolated by comparing a coupled model run with a run where climate and the carbon cycle are uncoupled. The modeled positive feedback between the carbon cycle and climate is found to be relatively small, resulting in an increase in simulated CO2 of 60 ppmv at the year 2100. Including non-CO2 greenhouse gas forcing and increasing the model’s climate sensitivity increase the effect of this feedback to 140 ppmv. The UVic model does not, however, simulate a switch from a terrestrial carbon sink to a source during the twenty-first century, as earlier studies have suggested. This can be explained by a lack of substantial reductions in simulated vegetation productivity due to climate changes.


Tellus B ◽  
2010 ◽  
Vol 62 (5) ◽  
Author(s):  
Victor Brovkin ◽  
Stephan J. Lorenz ◽  
Johann Jungclaus ◽  
Thomas Raddatz ◽  
Claudia Timmreck ◽  
...  

2012 ◽  
Vol 14 (3) ◽  
pp. 320-326
Author(s):  
Nan WU ◽  
Honglin HE ◽  
Li ZHANG ◽  
Xiaoli REN ◽  
Yuanchun ZHOU ◽  
...  

2017 ◽  
Vol 13 (2) ◽  
pp. 149-170 ◽  
Author(s):  
Rosanna Greenop ◽  
Mathis P. Hain ◽  
Sindia M. Sosdian ◽  
Kevin I. C. Oliver ◽  
Philip Goodwin ◽  
...  

Abstract. The boron isotope composition (δ11B) of foraminiferal calcite reflects the pH and the boron isotope composition of the seawater the foraminifer grew in. For pH reconstructions, the δ11B of seawater must therefore be known, but information on this parameter is limited. Here we reconstruct Neogene seawater δ11B based on the δ11B difference between paired measurements of planktic and benthic foraminifera and an estimate of the coeval water column pH gradient from their δ13C values. Carbon cycle model simulations underscore that the ΔpH–Δδ13C relationship is relatively insensitive to ocean and carbon cycle changes, validating our approach. Our reconstructions suggest that δ11Bsw was  ∼  37.5 ‰ during the early and middle Miocene (roughly 23–12 Ma) and rapidly increased during the late Miocene (between 12 and 5 Ma) towards the modern value of 39.61 ‰. Strikingly, this pattern is similar to the evolution of the seawater isotope composition of Mg, Li and Ca, suggesting a common forcing mechanism. Based on the observed direction of change, we hypothesize that an increase in secondary mineral formation during continental weathering affected the isotope composition of riverine input to the ocean since 14 Ma.


Sign in / Sign up

Export Citation Format

Share Document