secondary mineral formation
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
pp. 26-42
Author(s):  
N. ZINCHUK

Methods of studying postmagmatic and hypergene kimberlite rock alteration, as well as identifying secondary minerals and their associations are characterized. It is shown that secondary mineral formation processes took place in a wide temperature range and they are caused by their downward change of medium reaction from alkaline to acidic followed by neutralization, which resulted in dissolution, additional growth and emergence of new secondary mineral generations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Toshihiro Yoshimura ◽  
Daisuke Araoka ◽  
Hodaka Kawahata ◽  
H. M. Zakir Hossain ◽  
Naohiko Ohkouchi

The silicate weathering of continental rocks plays a vital role in determining ocean chemistry and global climate. Spatiotemporal variations in the Li isotope ratio (δ7Li) of terrestrial waters can be used to identify regimes of current and past weathering processes. Here we examine: 1) monthly dissolved δ7Li variation in the Ganges River’s lower reaches; and 2) the spatiotemporal variation of river water of the Brahmaputra, Meghna rivers, and groundwater in Bangladesh. From the beginning to maximum flood discharges of the rainy season (i.e., from June to September), Li concentrations and δ7Li in the Ganges River show remarkable changes, with a large influence from Himalayan sources. However, most Li discharge across the rainy season is at steady-state and strongly influenced by the secondary mineral formation in the low-altitude floodplain. Secondary mineral formation strongly influences the Meghna River’s Li isotopic composition along with fractionation lines similar to the Ganges River. A geothermal input is an additional Li source for the Brahmaputra River. For groundwater samples shallower than ∼60 m depth, both δ7Li and Li/Na are highly scattered regardless of the sampling region, suggesting the variable extent of fractionation. For deep groundwater (70–310 m) with a longer residence time (3,000 to 20,000 years), the lower δ7Li values indicate more congruent weathering. These results suggest that Li isotope fractionation in rivers and groundwater depends on the timescale of water-mineral interaction, which plays an essential role in determining the isotopic signature of terrestrial Li inputs to the ocean.


2021 ◽  
Author(s):  
Rouven Metz ◽  
Naresh Kumar ◽  
Walter Schenkeveld ◽  
Stephan Kraemer

<p>The vital element phosphorus (P) invokes two extremes in the environment; (i) scarcity, as a non-renewable resource and as a poorly bioavailable limiting nutrient for plants, and (ii) excess, as cause of eutrophication in surface waters. To tackle both these problems, the inter-relationship between the P and the iron (Fe) cycle is widely discussed with a special interest in the ferrous iron-phosphate mineral vivianite (Fe(II)<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>*8H<sub>2</sub>O). Vivianite forms naturally in sub-/anoxic environments with high Fe(II) and PO<sub>4 </sub>concentrations, and is a sink to the dissolved P concentration. On the other hand, vivianite has been proposed as a P source through application as a slow-release Fe-P fertilizer prepared from recycled P. However, vivianite is a metastable mineral under oxic conditions; it readily oxidizes, notably changing color from white to dark blue/purple. This transformation changes the properties of the mineral (surface), and thus its suitability as a fertilizer.</p><p>We investigated the oxidation and dissolution of vivianite under different environmental conditions with the aim of developing a mechanistic and kinetic model that relates the oxidation process with dissolution rates.  Moreover, the effect of secondary mineral precipitation on the ‘net’ availability of P and Fe for soil organisms was also studied. Quantifying dissolution rates and secondary mineral formation under environmentally relevant conditions provides the fundamental knowledge needed to assess the suitability of vivianite as Fe and P fertilizer. This information is also paramount to the idea of a circular economy concept: starting with the reduction of P loads of (waste) waters and using the byproduct vivianite as P source for fertilization.</p>


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 149
Author(s):  
Edward J. O’Loughlin ◽  
Maxim I. Boyanov ◽  
Christopher A. Gorski ◽  
Michelle M. Scherer ◽  
Kenneth M. Kemner

The bioreduction of Fe(III) oxides by dissimilatory iron-reducing bacteria may result in the formation of a suite of Fe(II)-bearing secondary minerals, including magnetite (a mixed Fe(II)/Fe(III) oxide), siderite (Fe(II) carbonate), vivianite (Fe(II) phosphate), chukanovite (ferrous hydroxy carbonate), and green rusts (mixed Fe(II)/Fe(III) hydroxides). In an effort to better understand the factors controlling the formation of specific Fe(II)-bearing secondary minerals, we examined the effects of Fe(III) oxide mineralogy, phosphate concentration, and the availability of an electron shuttle (9,10-anthraquinone-2,6-disulfonate, AQDS) on the bioreduction of a series of Fe(III) oxides (akaganeite, feroxyhyte, ferric green rust, ferrihydrite, goethite, hematite, and lepidocrocite) by Shewanella putrefaciens CN32, and the resulting formation of secondary minerals, as determined by X-ray diffraction, Mössbauer spectroscopy, and scanning electron microscopy. The overall extent of Fe(II) production was highly dependent on the type of Fe(III) oxide provided. With the exception of hematite, AQDS enhanced the rate of Fe(II) production; however, the presence of AQDS did not always lead to an increase in the overall extent of Fe(II) production and did not affect the types of Fe(II)-bearing secondary minerals that formed. The effects of the presence of phosphate on the rate and extent of Fe(II) production were variable among the Fe(III) oxides, but in general, the highest loadings of phosphate resulted in decreased rates of Fe(II) production, but ultimately higher levels of Fe(II) than in the absence of phosphate. In addition, phosphate concentration had a pronounced effect on the types of secondary minerals that formed; magnetite and chukanovite formed at phosphate concentrations of ≤1 mM (ferrihydrite), <~100 µM (lepidocrocite), 500 µM (feroxyhyte and ferric green rust), while green rust, or green rust and vivianite, formed at phosphate concentrations of 10 mM (ferrihydrite), ≥100 µM (lepidocrocite), and 5 mM (feroxyhyte and ferric green rust). These results further demonstrate that the bioreduction of Fe(III) oxides, and accompanying Fe(II)-bearing secondary mineral formation, is controlled by a complex interplay of mineralogical, geochemical, and microbiological factors.


2020 ◽  
Author(s):  
Jifeng Xue ◽  
Sana Ishida ◽  
Tatsuya Kato ◽  
Shigeshi Fuchida ◽  
Shigeto Kuroiwa ◽  
...  

2018 ◽  
Vol 2 (4) ◽  
pp. 399-409 ◽  
Author(s):  
Rui Han ◽  
Tongxu Liu ◽  
Fangbai Li ◽  
Xiaomin Li ◽  
Dandan Chen ◽  
...  

2017 ◽  
Vol 13 (2) ◽  
pp. 149-170 ◽  
Author(s):  
Rosanna Greenop ◽  
Mathis P. Hain ◽  
Sindia M. Sosdian ◽  
Kevin I. C. Oliver ◽  
Philip Goodwin ◽  
...  

Abstract. The boron isotope composition (δ11B) of foraminiferal calcite reflects the pH and the boron isotope composition of the seawater the foraminifer grew in. For pH reconstructions, the δ11B of seawater must therefore be known, but information on this parameter is limited. Here we reconstruct Neogene seawater δ11B based on the δ11B difference between paired measurements of planktic and benthic foraminifera and an estimate of the coeval water column pH gradient from their δ13C values. Carbon cycle model simulations underscore that the ΔpH–Δδ13C relationship is relatively insensitive to ocean and carbon cycle changes, validating our approach. Our reconstructions suggest that δ11Bsw was  ∼  37.5 ‰ during the early and middle Miocene (roughly 23–12 Ma) and rapidly increased during the late Miocene (between 12 and 5 Ma) towards the modern value of 39.61 ‰. Strikingly, this pattern is similar to the evolution of the seawater isotope composition of Mg, Li and Ca, suggesting a common forcing mechanism. Based on the observed direction of change, we hypothesize that an increase in secondary mineral formation during continental weathering affected the isotope composition of riverine input to the ocean since 14 Ma.


Sign in / Sign up

Export Citation Format

Share Document