scholarly journals Apoptotic Cell Death and Caspase-3 Activation Induced by N-Methyl-d-Aspartate Receptor Antagonists and Their Prevention by Insulin-Like Growth Factor I

2002 ◽  
Vol 73 (2) ◽  
pp. 548-556 ◽  
Author(s):  
Tsuneo Takadera ◽  
Ikumi Matsuda ◽  
Takao Ohyashiki
1998 ◽  
Vol 31 ◽  
pp. 66
Author(s):  
M. Scheinowitz ◽  
G. Sangiorgi ◽  
L.G. Spagnoli ◽  
A. Orlandi ◽  
A. Kellyar ◽  
...  

1997 ◽  
Vol 21 (6) ◽  
pp. 1121-1127 ◽  
Author(s):  
Shi-jun Cui ◽  
Manorama Tewari ◽  
Tim Schneider ◽  
Raphael Rubin

1993 ◽  
Vol 90 (23) ◽  
pp. 10989-10993 ◽  
Author(s):  
S R D'Mello ◽  
C Galli ◽  
T Ciotti ◽  
P Calissano

High levels of extracellular K+ ensure proper development and prolong survival of cerebellar granule neurons in culture. We find that when switched from a culture medium containing high K+ (25 mM) to one containing a low but more physiological K+ concentration (5 mM), differentiated granule neurons degenerate and die. Death induced by low K+ is due to apoptosis (programmed cell death), a form of cell death observed extensively in the developing nervous system and believed to be necessary for proper neurogenesis. The death process is accompanied by cleavage of genomic DNA into internucleosome-sized fragments, a hallmark of apoptosis. Inhibitors of transcription and translation suppress apoptosis induced by low K+, suggesting the necessity for newly synthesized gene products for activation of the process. Death can be prevented by insulin-like growth factor I but not by several other growth/neurotrophic factors. cAMP but not the protein kinase C activator phorbol 12-myristate 13-acetate can also support survival in low K+. In view of the large numbers of granule neurons that can be homogeneously cultured, our results offer the prospect of an excellent model system to study the mechanisms underlying apoptosis in the central nervous system and the suppression of this process by survival factors such as insulin-like growth factor I.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3483-3488 ◽  
Author(s):  
S. Celeste Posey ◽  
Maria Paola Martelli ◽  
Toshifumi Azuma ◽  
David J. Kwiatkowski ◽  
Barbara E. Bierer

Abstract The actin regulatory protein gelsolin cleaves actin filaments in a calcium- and polyphosphoinositide-dependent manner. Gelsolin has recently been described as a novel substrate of the cysteinyl protease caspase-3, an effector protease activated during apoptosis. Cleavage by caspase-3 generates an amino-terminal fragment of gelsolin that can sever actin filaments independently of calcium regulation. The disruption of the actin cytoskeleton by cleaved gelsolin is hypothesized to mediate many of the downstream morphological changes associated with apoptosis. In contrast, overexpression of full-length gelsolin has also been reported to inhibit apoptotic cell death upstream of the activation of caspase-3, suggesting that gelsolin may also act prior to commitment to cell death. The authors previously observed that actin stabilization by the cell permeant agent jasplakinolide enhanced cell death upon interleukin (IL)-2 or IL-3 withdrawal from growth-factor–dependent lymphocyte cell lines, and hypothesized that actin polymerization could alter the activity of gelsolin, thus enhancing apoptosis. Here the authors show that constitutive overexpression of gelsolin did not, however, inhibit or dramatically enhance apoptotic cell death upon growth-factor withdrawal, nor did it modify sensitivity to jasplakinolide. In contrast to previous reports, overexpression of gelsolin in Jurkat T cells did not prevent or delay apoptosis induced by Fas ligation or ceramide treatment. Overexpressed gelsolin protein was cleaved during apoptosis, as seen previously in this and other cell types. In these model systems, therefore, the level of gelsolin expression was not a rate-limiting determinant in commitment to or time to the morphological changes of apoptosis.


Sign in / Sign up

Export Citation Format

Share Document